58 research outputs found

    Effects of CO2 and H2S on corrosion of martensitic steels in brines at low temperature

    Get PDF
    Corrosion studies were conducted for martensitic carbon steels in 5 wt% NaCl brine solutions at 4°C and 10 MPa (1,450 psi). These studies simulated different subsurface environments relevant to Arctic drilling. Here, two high-strength martensitic carbon steels, S-135 and UD-165, were studied in three different environments: (1) a CO2-NaCl-H2O solution with a CO2:H2O molar ratio of 0.312 in the whole system, (2) an H2SNaCl- H2O solution with an H2S:H2O molar ratio of 3.12 × 10−4, and (3) a CO2-H2S-NaCl-H2O solution with the same acid gas to water ratios as environments 1 and 2. Results from the CO2+H2S mixed environment indicated that sour corrosion mechanism was dominant when the CO2:H2S molar ratio was 1,000. This impact of a small amount of H2S on the corrosion mechanism could be attributed to the specific adsorption of H2S on the steel surface. Electrochemical and mass loss measurements showed a distinct drop in the corrosion rate (CR) by more than one order of magnitude when transitioning from sweet to sour corrosion. This inhibiting effect on CR was attributed to the formation of a protective sulfide thin film

    Corrosion behavior of 13Cr casing steel in cement-synthetic pore solution exposed to high pressure CO2 and H2S

    Get PDF
    The electrochemical corrosion behavior of grade L-80, type 13Cr casing steel was investigated in cement-synthetic pore solution (CSPS) exposed to CO2 and H2S using in-situ electrochemical methods and ex-situ surface analyses at 85 and 200 °C, respectively. Total system pressure was 10 MPa. Corrosion rates increased significantly when the temperature increased from 85 to 200 °C. Limiting current behavior was observed for the anode reaction, while charge-transfer control was observed for the cathode reaction. Surface analyses revealed the presence of CaCO3 on the surface at both temperatures and FeCO3-like deposits at 200 °C

    Understanding and Controlling Cu-Catalyzed Graphene Nucleation: The Role of Impurities, Roughness, and Oxygen Scavenging

    Get PDF
    The mechanism by which Cu catalyst pretreatments control graphene nucleation density in scalable chemical vapor deposition (CVD) is systematically explored. The intrinsic and extrinsic carbon contamination in the Cu foil is identified by time-of-flight secondary ion mass spectrometry as a major factor influencing graphene nucleation and growth. By selectively oxidizing the backside of the Cu foil prior to graphene growth, a drastic reduction of the graphene nucleation density by 6 orders of magnitude can be obtained. This approach decouples surface roughness effects and at the same time allows us to trace the scavenging effect of oxygen on deleterious carbon impurities as it permeates through the Cu bulk. Parallels to well-known processes in Cu metallurgy are discussed. We also put into context the relative effectiveness and underlying mechanisms of the most widely used Cu pretreatments, including wet etching and electropolishing, allowing a rationalization of current literature and determination of the relevant parameter space for graphene growth. Taking into account the wider CVD growth parameter space, guidelines are discussed for high-throughput manufacturing of "electronic-quality" monolayer graphene films with domain size exceeding 1 mm, suitable for emerging industrial applications, such as electronics and photonics.This research was supported by the ERC under grant InsituNANO (279342), the EPSRC under grant GRAPHTED (EP/K016636/1), and the Innovation R&D programme of the National Measurement System of the U.K. Department of Business, Innovation and Skills (project number 118616)
    • …
    corecore