4,734 research outputs found

    Multitransient electromagnetic demonstration survey in France

    Get PDF

    The Biodiversity and Geochemistry of Cryoconite Holes in Queen Maud Land, East Antarctica

    Get PDF
    Cryoconite holes are oases of microbial diversity on ice surfaces. In contrast to the Arctic, where during the summer most cryoconite holes are ‘open’, in Continental Antarctica they are most often ‘lidded’ or completely frozen year-round. Thus, they represent ideal systems for the study of microbial community assemblies as well as carbon accumulation, since individual cryoconite holes can be isolated from external inputs for years. Here, we use high-throughput sequencing of the 16S and 18S rRNA genes to describe the bacterial and eukaryotic community compositions in cryoconite holes and surrounding lake, snow, soil and rock samples in Queen Maud Land. We cross correlate our findings with a broad range of geochemical data including for the first time 13C and 14C analyses of Antarctic cryoconites. We show that the geographic location has a larger effect on the distribution of the bacterial community compared to the eukaryotic community. Cryoconite holes are distinct from the local soils in both 13C and 14C and their isotopic composition is different from similar samples from the Arctic. Carbon contents were generally low (≀0.2%) and older (6–10 ky) than the surrounding soils, suggesting that the cryoconite holes are much more isolated from the atmosphere than the soils

    Excitation of guided waves in layered structures with negative refraction

    Full text link
    We study the electromagnetic beam reflection from layered structures that include the so-called double-negative materials, also called left-handed metamaterials. We predict that such structures can demonstrate a giant lateral Goos-Hanchen shift of the scattered beam accompanied by splitting of the reflected and transmitted beams due to the resonant excitation of surface waves at the interfaces between the conventional and double-negative materials as well as due to excitation of leaky modes in the layered structures. The beam shift can be either positive or negative, depending on the type of the guided waves excited by the incoming beam. We also perform finite-difference time-domain simulations and confirm the major effects predicted analytically.Comment: 13 pqages, 10 figures. Also available at http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-2-48

    Clinical usefulness of cancer markers in primary breast cancer

    Get PDF
    The aim of this study was to investigate the diagnostic power of CA 549, MSA and CA 15-3 in identifying breast cancer. The study included 232 patients of which 56 were healthy, 43 had benign breast cancer and 191 with other growths. The results were obtained using a specific immunoassay and using producers' cut offs. The following sensitivity and specificity of markers were found: CA 549 (sen.: 40%/spec.: 90%), MSA (sen.: 22%/spec.: 96%), and CA 15-3 (sen.: 33%/spec.: 86%). Ideal cut offs were defined with ROC curves. A significant correlation was found between CA 549, MSA, and CA 15-3. The combination of markers does not improve the clinical usefulness to identify only breast cancer. Serum tumor markers are abnormally elevated in patients with breast cancer. CA 549, MSA, CA 15-3 are useful clinical markers, good indicators of disease extent, and may have important prognostic value. This study demonstrates the role of the tumor markers in breast cancer

    Least Upper Bounds of the Powers Extracted and Scattered by Bi-anisotropic Particles

    Full text link
    The least upper bounds of the powers extracted and scattered by bi-anisotropic particles are investigated analytically. A rigorous derivation for particles having invertible polarizability tensors is presented, and the particles with singular polarizability tensors that have been reported in the literature are treated explicitly. The analysis concludes that previous upper bounds presented for isotropic particles can be extrapolated to bi-anisotropic particles. In particular, it is shown that neither nonreciprocal nor magnetoelectric coupling phenomena can further increase those upper bounds on the extracted and scattered powers. The outcomes are illustrated further with approximate circuit model examples of two dipole antennas connected via a generic lossless network.Comment: 9 pages, 1 figure

    Microwave whirlpools in a rectangular-waveguide cavity with a thin ferrite disk

    Full text link
    We study a three dimensional system of a rectangular-waveguide resonator with an inserted thin ferrite disk. The interplay of reflection and transmission at the disk interfaces together with material gyrotropy effect, gives rise to a rich variety of wave phenomena. We analyze the wave propagation based on full Maxwell-equation numerical solutions of the problem. We show that the power-flow lines of the microwave-cavity field interacting with a ferrite disk, in the proximity of its ferromagnetic resonance, form whirlpool-like electromagnetic vortices. Such vortices are characterized by the dynamical symmetry breaking. The role of ohmic losses in waveguide walls and dielectric and magnetic losses in a disk is a subject of our investigations

    FDTD analysis of the tunneling and growing exponential in a pair of epsilon-negative and mu-negative slabs

    Full text link
    Pairing together material slabs with opposite signs for the real parts of their constitutive parameters has been shown to lead to interesting and unconventional properties that are not otherwise observable for single slabs. One such case was demonstrated analytically for the conjugate (i.e., complementary) pairing of infinite planar slabs of epsilon-negative (ENG) and mu-negative (MNG) media [A. Alu, and N. Engheta, IEEE Trans. Antennas Prop., 51, 2558 (2003)]. There it was shown that when these two slabs are juxtaposed and excited by an incident plane wave, resonance, complete tunneling, total transparency and reconstruction of evanescent waves may occur in the steady-state regime under a monochromatic excitation, even though each of the two slabs by itself is essentially opaque to the incoming radiation. This may lead to virtual imagers with sub-wavelength resolution and other anomalous phenomena overcoming the physical limit of diffraction. Here we explore how a transient sinusoidal signal that starts at t = 0 interacts with such an ENG-MNG pair of finite size using an FDTD technique. Multiple reflections and transmissions at each interface are shown to build up to the eventual steady state response of the pair, and during this process one can observe how the growing exponential phenomenon may actually occur inside this bilayer.Comment: 14 pages, 9 figures, submitted to Phys Rev

    The Design and Simulated Performance of a Coated Nano-Particle Laser

    Get PDF
    The optical properties of a concentric nanometer-sized spherical shell comprised of an (active) 3-level gain medium core and a surrounding plasmonic metal shell are investigated. Current research in optical metamaterials has demonstrated that including lossless plasmonic materials to achieve a negative permittivity in a nano-sized coated spherical particle can lead to novel optical properties such as resonant scattering as well as transparency or invisibility. However, in practice, plasmonic materials have high losses at optical frequencies. It is observed that with the introduction of active materials, the intrinsic absorption in the plasmonic shell can be overcome and new optical properties can be observed in the scattering and absorption cross-sections of these coated nano-sized spherical shell particles. In addition, a "super" resonance is observed with a magnitude that is greater than that for a tuned, resonant passive nano-sized coated spherical shell. This observation suggests the possibility of realizing a highly sub-wavelength laser with dimensions more than an order of magnitude below the traditional half-wavelength cavity length criteria. The operating characteristics of this coated nano-particle (CNP) laser are obtained numerically for a variety of configurations.Comment: 35 pages. Revision submitted to Optics Express, Feb 15, 2007. This replacement is intended to clarify the work presented in the previous version of this paper. In particular, the definitions and parameters associated with the permittivity that was used to include the three level gain model used in the simulation results presented. The authors also made changes to some of the wording used in the text for better clarity. The results presented in this version are identical to those of the previous versio

    Negative effective permeability and left-handed materials at optical frequencies

    Get PDF
    We present here the design of nano-inclusions made of properly arranged collections of plasmonic metallic nano-particles that may exhibit a resonant magnetic dipole collective response in the visible domain. When such inclusions are embedded in a host medium, they may provide metamaterials with negative effective permeability at optical frequencies. We also show how the same inclusions may provide resonant electric dipole response and, when combining the two effects at the same frequencies, lefthanded materials with both negative effective permittivity and permeability may be synthesized in the optical domain with potential applications for imaging and nano-optics applications.Comment: 11 pages, 6 figures; modified the format, added a figur
    • 

    corecore