3,909 research outputs found

    Metamaterial-Inspired Efficient Electrically Small Antenna

    Get PDF
    Abstract—Planar two-dimensional (2D) and volumetric threedimensional (3D) metamaterial-inspired efficient electrically-small antennas that are easy to design; are easy and inexpensive to build; and are easy to test; are reported, i.e., the EZ antenna systems. The proposed 2D and 3D electrical- and magnetic-based EZ antennas are shown to be naturally matched to a 50 source, i.e., without the introduction of a matching network. It is demonstrated numerically that these EZ antennas have high radiation efficiencies with very good impedance matching between the source and the antenna and, hence, that they have high overall efficiencies. The reported 2D and 3D EZ antenna designs are linearly scalable to a wide range of frequencies and yet maintain their easy-to-build characteristics. Several versions of the 2D EZ antennas were fabricated and tested. The measurement results confirm the performance predictions. The EZ antennas systems may provide attractive alternatives to existing electrically-small antennas. Index Terms—Antenna efficiency, antennas, electrically small antenna (ESA), metamaterials. I

    Microwave whirlpools in a rectangular-waveguide cavity with a thin ferrite disk

    Full text link
    We study a three dimensional system of a rectangular-waveguide resonator with an inserted thin ferrite disk. The interplay of reflection and transmission at the disk interfaces together with material gyrotropy effect, gives rise to a rich variety of wave phenomena. We analyze the wave propagation based on full Maxwell-equation numerical solutions of the problem. We show that the power-flow lines of the microwave-cavity field interacting with a ferrite disk, in the proximity of its ferromagnetic resonance, form whirlpool-like electromagnetic vortices. Such vortices are characterized by the dynamical symmetry breaking. The role of ohmic losses in waveguide walls and dielectric and magnetic losses in a disk is a subject of our investigations

    On the Localization of One-Photon States

    Get PDF
    Single photon states with arbitrarily fast asymptotic power-law fall-off of energy density and photodetection rate are explicitly constructed. This goes beyond the recently discovered tenth power-law of the Hellwarth-Nouchi photon which itself superseded the long-standing seventh power-law of the Amrein photon.Comment: 7 pages, tex, no figure

    Self-induced charge currents in electromagnetic materials, photon effective rest mass and some related topics

    Full text link
    The contribution of self-induced charge currents of metamaterial media to photon effective rest mass is discussed in detail in the present paper. We concern ourselves with two kinds of photon effective rest mass, i.e., the frequency-dependent and frequency-independent effective rest mass. Based on these two definitions, we calculate the photon effective rest mass in the left-handed medium and the 2TDLM media, the latter of which is described by the so-called two time derivative Lorentz material (2TDLM) model. Additionally, we concentrate primarily on the torque, which is caused by the interaction between self-induced charge currents in dilute plasma (e.g., the secondary cosmic rays) and interstellar magnetic fields (ambient cosmic magnetic vector potentials), acting on the torsion balance of the rotating torsion balance experiment.Comment: 11 pages, Late

    Explosion Mechanisms of Core-Collapse Supernovae

    Full text link
    Supernova theory, numerical and analytic, has made remarkable progress in the past decade. This progress was made possible by more sophisticated simulation tools, especially for neutrino transport, improved microphysics, and deeper insights into the role of hydrodynamic instabilities. Violent, large-scale nonradial mass motions are generic in supernova cores. The neutrino-heating mechanism, aided by nonradial flows, drives explosions, albeit low-energy ones, of ONeMg-core and some Fe-core progenitors. The characteristics of the neutrino emission from new-born neutron stars were revised, new features of the gravitational-wave signals were discovered, our notion of supernova nucleosynthesis was shattered, and our understanding of pulsar kicks and explosion asymmetries was significantly improved. But simulations also suggest that neutrino-powered explosions might not explain the most energetic supernovae and hypernovae, which seem to demand magnetorotational driving. Now that modeling is being advanced from two to three dimensions, more realism, new perspectives, and hopefully answers to long-standing questions are coming into reach.Comment: 35 pages, 11 figures (29 eps files; high-quality versions can be obtained upon request); accepted by Annual Review of Nuclear and Particle Scienc

    Transformation Optics for Plasmonics

    Full text link
    A new strategy to control the flow of surface plasmon polaritons at metallic surfaces is presented. It is based on the application of the concept of Transformation Optics to devise the optical parameters of the dielectric medium placed on top of the metal surface. We describe the general methodology for the design of Transformation-Optical devices for surface plasmons and analyze, for proof-of-principle purposes, three representative examples with different functionalities: a beam shifter, a cylindrical cloak and a ground-plane cloak.Comment: 15 pages, 3 figure

    Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials

    Full text link
    The explicit dispersion equation for a one-dimensional periodic structure with alternative layers of left-handed material (LHM) and right-handed material (RHM) is given and analyzed. Some abnormal phenomena such as spurious modes with complex frequencies, discrete modes and photon tunnelling modes are observed in the band structure. The existence of spurious modes with complex frequencies is a common problem in the calculation of the band structure for such a photonic crystal. Physical explanation and significance are given for the discrete modes (with real values of wave number) and photon tunnelling propagation modes (with imaginary wave numbers in a limited region).Comment: 10 pages, 4 figure

    Green's function for metamaterial superlens: Evanescent wave in the image

    Full text link
    We develop a new method to calculate the evanescent wave, the subdivided evanescent waves (SEWs), and the radiative wave, which can be obtained by separating the global field of the image of metamaterial superlens. The method is based on Green's function, and it can be applied in other linear systems. This study could help us to investigate the effect of evanescent wave on metamaterial superlens directly, and give us a new way to design new devices.Comment: 15 pages, 3 figure

    Gyrotropic impact upon negatively refracting surfaces

    Get PDF
    Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given
    • …
    corecore