25 research outputs found

    Sliding mode adaptive state observation for time-delay uncertain nonlinear systems

    Get PDF
    In this paper a method to design robust adaptive sliding mode observers (ASMO) for a class of nonlinear time- delay systems with uncertainties, is proposed. The objective is to achieve insensitivity and robustness of the proposed sliding mode observer to matched disturbances. A novel systematic design method is synthesized to solve matching conditions and compute observer stabilizing gains. The Lyapunov-Krasovskii theorem is employed to prove the ultimate stability with arbitrary boundedness radius of the estimation error of the proposed filter. Finally, the ability of ASMO for fault reconstruction is studied

    Optimal sliding mode controllers for attitude tracking of spacecraft

    Get PDF
    This paper studies two optimal sliding mode control laws using integral sliding mode control (ISM) for some spacecraft attitude tracking problems. Integral sliding mode control combining the first order sliding mode and optimal control is applied to quaternion-based spacecraft attitude tracking manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state dependent Riccati equation (SDRE) and Control Lyapunov function (CLF) approaches are used to solve the infinite-time nonlinear optimal problem. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude tracking manoeuvres is presented and simulation results are included to verify the usefulness of these controllers

    Adaptive sliding mode observers in uncertain chaotic cryptosystems with a relaxed matching condition

    Get PDF
    We study the performance of adaptive sliding mode observers in chaotic synchronization and communication in the presence of uncertainties. The proposed robust adaptive observer-based synchronization is used for cryptography based on chaotic masking modulation (CM). Uncertainties are intentionally injected into the chaotic dynamical system to achieve higher security and we use robust sliding mode observer design methods for the uncertain nonlinear dynamics. In addition, a relaxed matching condition is introduced to realize the robust observer design. Finally, a Lorenz system is employed as an illustrative example to demonstrate the effectiveness and feasibility of the proposed cryptosyste

    Quasi-continuous higher-order sliding mode controller designs for spacecraft attitude tracking manoeuvres

    Get PDF
    This paper studies high-order sliding mode control laws to deal with some spacecraft attitude tracking problems. Second and third order quasi-continuous sliding control are applied to quaternion-based spacecraft attitude tracking manoeuvres. A class of linear sliding manifolds is selected as a function of angular velocities and quaternion errors. The second method of Lyapunov theory is used to show that tracking is achieved globally. An example of multiaxial attitude tracking manoeuvres is presented and simulation results are included to verify and compare the usefulness of the various controllers

    Quasi-continuous higher-order sliding-mode controllers for spacecraft-attitude-tracking manoeuvres

    Get PDF
    This paper studies higher order sliding-modecontrol laws to deal with some spacecraft-attitude-tracking problems. Quasi-continuous second- and third-order sliding controllers and differentiators are applied to quaternion-based spacecraftattitude- tracking maneuvers. A class of linear sliding manifolds is selected as a function of angular velocities and quaternion errors. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude-tracking maneuvers is presented, and simulation results are included to verify and compare the practical usefulness of the various controllers

    On classical state space realizability of bilinear inout-output differential equations

    Get PDF
    This paper studies the realizability property of continuous-time bilinear i/o equations in the classical state space form. Constraints on the parameters of the bilinear i/o model are suggested that lead to realizable models. The paper proves that the 2nd order bilinear i/o differential equation, unlike the discrete-time case, is always realizable in the classical state space form. The complete list of 3rd and 4th order realizable i/o bilinear models is given and two subclasses of realizable i/o bilinear systems are suggested. Our conditions rely basically upon the property that certain combinations of coefficients of the i/o equations are zero or not zero. We provide explicit state equations for all realizable 2nd and 3rd order bilinear i/o equations, and for one realizable subclass of bilinear i/o equations of arbitrary orde

    Smooth Adaptive Sliding Mode Observers in Uncertain Chaotic Communication

    No full text
    We study the performance of adaptive sliding mode observers (ASMO) in chaotic synchronization and communication in the presence of uncertainties. The proposed robust adaptive observer-based synchronization is used for cryptography based on non-linear chaotic masking modulation (NCM). Uncertainties are intentionally injected into the chaotic dynamical system to achieve higher security and we use robust sliding mode observer design methods for the uncertain non-linear dynamics. In addition, a relaxed matching condition and a boundary layer smooth gain are introduced to realize the robust observer design more feasibly. A brief study in introducing an alternative augmented ASMO-based chaotic communication configuration will be discussed. Finally, a Lorenz system is employed as an illustrative example to demonstrate the effectiveness and feasibility of the proposed cryptosystem

    Optimal sliding mode controllers for spacecraft attitude manoeuvres

    No full text
    This paper studies optimal sliding mode controller designs using integral sliding mode control (ISM) to deal with some spacecraft attitude control problems. Integral sliding mode control combining the first order sliding mode and optimal control is applied to quaternion-based attitude control for rest-to-rest manoeuvres with external disturbances. In the optimal control part, the state dependent Riccati equation (SDRE) approach and control Lyapunov function (CLF) are used to solve the infinite-time nonlinear optimal problem. The second method of Lyapunov is used to show that asymptotic stability is achieved. An example of rest-to-rest attitude manoeuvres is presented and simulation results are included to verify and compare the usefulness of the various controllers

    Second order sliding mode control for SISO output delay system tracking

    No full text
    corecore