508 research outputs found

    Search for Binary Protostars

    Get PDF
    In an effort to shed more light on the formation process of binary stars, we have started a program to study multiplicity among nearby low- and intermediate-mass protostars using the OVRO Millimeter Array. Here, we describe the project and present the first results on the protostellar core in the Bok globule CB230 (L1177). At 10 arcsec resolution, the molecular core is resolved into two components separated by 5000 AU. The morphology and kinematics of the double core suggest that it formed from a single cloud core due to rotational fragmentation.Comment: 4 pages, 2 figures, ALMA conference proceeding

    The Origin of the Initial Mass Function

    Full text link
    We review recent advances in our understanding of the origin of the initial mass function (IMF). We emphasize the use of numerical simulations to investigate how each physical process involved in star formation affects the resulting IMF. We stress that it is insufficient to just reproduce the IMF, but that any successful model needs to account for the many observed properties of star forming regions including clustering, mass segregation and binarity. Fragmentation involving the interplay of gravity, turbulence, and thermal effects is probably responsible for setting the characteristic stellar mass. Low-mass stars and brown dwarfs can form through the fragmentation of dense filaments and disks, possibly followed by early ejection from these dense environments which truncates their growth in mass. Higher-mass stars and the Salpeter-like slope of the IMF are most likely formed through continued accretion in a clustered environment. The effects of feedback and magnetic fields on the origin of the IMF are still largely unclear. Lastly, we discuss a number of outstanding problems that need to be addressed in order to develop a complete theory for the origin of the IMF.Comment: PPV conference paper, 16 pages, 11 figur

    The Primordial Binary Population in OB Associations

    Get PDF
    For understanding the process of star formation it is essential to know how many stars are formed as singles or in multiple systems, as a function of environment and binary parameters. This requires a characterization of the primordial binary population, which we define as the population of binaries that is present just after star formation has ceased, but before dynamical and stellar evolution have significantly altered its characteristics. In this article we present the first results of our adaptive optics survey of 200 (mainly) A-type stars in the nearby OB association Sco OB2. We report the discovery of 47 new candidate companions of Sco OB2 members. The next step will be to combine these observations with detailed simulations of young star clusters, in order to find the primordial binary population.Comment: 2 pages, 1 figure, poster paper to appear in proceedings of IAU Coll. 191 "The environments and evolution of binary and multiple stars

    NGC 3603 - a Local Template for Massive Young Clusters

    Get PDF
    We present a study of the star cluster associated with the massive Galactic HII region NGC3603 based on near-IR broad-- and narrowband observations taken with ISAAC/VLT under excellent seeing conditions (<0.4''). We discuss color-color diagrams and address the impact of the high UV flux on the disk evolution of the low-mass stars.Comment: 3 pages, 3 figures. To appear in the Proceedings of IAU Symposium 207 "Extragalactic Star Clusters", eds. E. Grebel, D. Geisler and D. Minitt

    Why Simple Stellar Population models do not reproduce the colours of Galactic open clusters

    Full text link
    (...) We search for an explanation of the disagreement between the observed integrated colours of 650 local Galactic clusters and the theoretical colours of present-day SSP models. We check the hypothesis that the systematic offsets between observed and theoretical colours, which are (B(B−-V)≈0.3V)\approx 0.3 and (J(J−-Ks)≈0.8K_s)\approx 0.8, are caused by neglecting the discrete nature of the underlying mass function. Using Monte Carlo simulations, we construct artificial clusters of coeval stars taken from a mass distribution defined by an Salpeter initial mass function (IMF) and compare them with corresponding "continuous-IMF" SSP models. If the discreteness of the IMF is taken into account, the model fits the observations perfectly and is able to explain naturally a number of red "outliers" observed in the empirical colour-age relation. We find that the \textit{systematic} offset between the continuous- and discrete-IMF colours reaches its maximum of about 0.5 in (B(B−-V)V) for a cluster mass Mc=102m⊙M_c=10^2 m_\odot at ages log⁥t≈7\log t\approx 7, and diminishes substantially but not completely to about one hundredth of a magnitude at log⁥t>7.9\log t >7.9 at cluster masses Mc>105m⊙M_c> 10^5 m_\odot. At younger ages, it is still present even in massive clusters, and for Mcâ©œ104m⊙M_c \leqslant 10^4 m_\odot it is larger than 0.1 mag in (B(B−-V)V). Only for very massive clusters (Mc>106m⊙M_c>10^6 m_\odot) with ages log⁥t<7.5\log t< 7.5 is the offset small (of the order of 0.04 mag) and smaller than the typical observational error of colours of extragalactic clusters.Comment: 4 pages, 3 figures, accepted for publication in Astronomy and Astrophysics Letters, revised version after language editing and with an additional reference to Cervino and Luridiana (2004

    Are there brown dwarfs in globular clusters?

    Full text link
    We present an analytical method for constraining the substellar initial mass function in globular clusters, based on the observed frequency of transit events. Globular clusters typically have very high stellar densities where close encounters are relatively common, and thus tidal capture can occur to form close binary systems. Encounters between main sequence stars and lower-mass objects can result in tidal capture if the mass ratio is > 0.01. If brown dwarfs exist in significant numbers, they too will be found in close binaries, and some fraction of their number should be revealed as they transit their stellar companions. We calculate the rate of tidal capture of brown dwarfs in both segregated and unsegregated clusters, and find that the tidal capture is more likely to occur over an initial relaxation time before equipartition occurs. The lack of any such transits in recent HST monitoring of 47 Tuc implies an upper limit on the frequency of brown dwarfs (< 15 % relative to stars) which is significantly below that measured in the galactic field and young clusters.Comment: MNRAS in pres

    The low-mass Initial Mass Function in the 30 Doradus starburst cluster

    Full text link
    We present deep Hubble Space Telescope (HST) NICMOS 2 F160W band observations of the central 56*57" (14pc*14.25pc) region around R136 in the starburst cluster 30 Dor (NGC 2070) located in the Large Magellanic Cloud. Our aim is to derive the stellar Initial Mass Function (IMF) down to ~1 Msun in order to test whether the IMF in a massive metal-poor cluster is similar to that observed in nearby young clusters and the field in our Galaxy. We estimate the mean age of the cluster to be 3 Myr by combining our F160W photometry with previously obtained HST WFPC2 optical F555W and F814W band photometry and comparing the stellar locus in the color-magnitude diagram with main sequence and pre-main sequence isochrones. The color-magnitude diagrams show the presence of differential extinction and possibly an age spread of a few megayears. We convert the magnitudes into masses adopting both a single mean age of 3 Myr isochrone and a constant star formation history from 2 to 4 Myr. We derive the IMF after correcting for incompleteness due to crowding. The faintest stars detected have a mass of 0.5 Msun and the data are more than 50% complete outside a radius of 5 pc down to a mass limit of 1.1 Msun for 3 Myr old objects. We find an IMF of dN/dlog(M) M^(-1.20+-0.2) over the mass range 1.1--20 Msun only slightly shallower than a Salpeter IMF. In particular, we find no strong evidence for a flattening of the IMF down to 1.1 Msun at a distance of 5 pc from the center, in contrast to a flattening at 2 Msun at a radius of 2 pc, reported in a previous optical HST study. We examine several possible reasons for the different results. If the IMF determined here applies to the whole cluster, the cluster would be massive enough to remain bound and evolve into a relatively low-mass globular cluster.Comment: Accepted in ApJ. Abstract abridge
    • 

    corecore