9 research outputs found

    Electrical and Optical Modeling of Thin-Film Photovoltaic Modules

    Get PDF
    Heutzutage ist durch viele wissenschaftliche Studien nachgewiesen, dass die Erde längst dem Klimawandel unterworfen ist. Daher muss die gesamte Menschheit vereint handeln, um die schlimmsten Katastrophenszenarien zu verhindern. Ein vielversprechender Ansatz - wenn nicht sogar der vielversprechendste überhaupt - um diese angesprochene, größte Herausforderung in der Geschichte der Menschheit zu bewältigen, ist es, den Energiehunger der Menschheit durch die Erzeugung erneuerbarer und unerschöpflicher Energie zu sättigen. Die Photovoltaik (PV)-Technologie ist ein vielversprechender Anwärter, die leistungsstärkste erneuerbare Energiequelle zu stellen, und spielt aufgrund ihrer direkten Umwandlung des Sonnenlichtes und ihrer skalierbaren Anwendbarkeit in Form von großflächigen Solarmodulen bereits jetzt eine große Rolle bei der Erzeugung erneuerbarer Energie. Im PV-Sektor sind Solarmodule aus Siliziumwafern die derzeit vorherrschende Technologie. Neu aufkommende PV-Technologien wie die Dünnschichttechnologie haben jedoch vorteilhafte Eigenschaften wie einen sehr geringen Kohlenstoffdioxid (CO2)-Fußabdruck, eine kurze energetische Amortisierungszeit und das Potenzial für eine kostengünstige monolithische Massenproduktion, obwohl diese derzeit noch nicht final ausgereift ist. Um die Dünnschichttechnologie jedoch gezielt in Richtung einer breiten Marktreife zu entwickeln, sind numerische Simulationen eine wichtige Säule für das wissenschaftliche Verständnis und die technologische Optimierung. Während sich traditionelle Simulationsliteratur häufig mit materialspezifischen Herausforderungen befasst, konzentriert sich diese Arbeit auf industrieorientierte Herausforderungen auf Modulebene, ohne die zugrundeliegenden Materialparameter zu verändern. Um ein allumfassendes, digitales Modell eines Solarmoduls zu erstellen, werden in dieser Arbeit mehrere Simulationsansätze aus verschiedenen physikalischen Bereichen kombiniert. Zur Abbildung elektrischer Effekte, einschließlich der räumlichen Spannungsvariation innerhalb des Moduls, wird eine Finite Elemente Methode (FEM) zur Lösung der räumlich quantisierten Poisson-Gleichung verwendet. Um optische Effekte zu berücksichtigen, wird eine generalisierte Transfermatrix-Methode (TMM) verwendet. Alle Simulationsmethoden sind in dieser Arbeit von Grund auf neu programmiert worden, um eine Verknüpfung aller Simulationsebenen mit dem höchstmöglichen Grad an Anpassung und Verknüpfung zu ermöglichen. Die Simulation und die Korrektheit der Parameter wird durch externe Quanteneffizienz (EQE)-Messungen, experimentelle Reflexionsdaten und gemessene Strom-Spannungs (I-U)-Kennlinien verifiziert. Der Kernpunkt der Vorgehensweise dieser Arbeit ist eine ganzheitliche Simulationsmethodik auf Modulebene. Dies ermöglicht es, die Lücke zwischen der Simulation auf Materialebene über die Berechnung von Laborwirkungsgraden bis hin zur Bestimmung der von zahlreichen Umweltfaktoren beeinflusste Leistung der Module im Freifeld zu überbrücken. Durch diese Verknüpfung von Zellsimulation und Systemdesign ist es lediglich aus Laboreigenschaften möglich, das Freifeldverhalten von Solarmodulen zu prognostizieren. Sogar das Zurückrechnen von experimentellen Messungen zu Materialparameter ist mittels des in dieser Arbeit entwickelten Verfahrens des Reverse Engineering Fittings (REF) möglich. Das in dieser Arbeit entwickelte numerische Verfahren kann für mehrere Anwendungen genutzt werden. Zunächst können durch die Kombination von elektrischen und optischen Simulationen ganzheitliche Top-Down-Verlustanalysen durchgeführt werden. Dies ermöglicht eine wissenschaftliche Einordnung und einen quantitativen Vergleich aller Verlustleistungsmechanismen auf einen Blick, was die zukünftige Forschung und Entwicklung in Richtung von technologischen Schwachstellen von Solarmodulen lenkt. Darüber hinaus ermöglicht die Kombination von Elektrik und Optik die Detektion von Verlusten, die auf dem nichtlinearen Zusammenspiel dieser beiden Ebenen beruhen und auf eine räumliche Spannungsverteilung im Solarmodul zurückzuführen sind. Diese Arbeit verwendet die entwickelten numerischen Modelle ebenfalls für Optimierungsprobleme, die an digitalen Modellen realer Solarmodule durchgeführt werden. Häufig auftretende Fragestellungen bei der Entwicklung von Solarmodulen sind beispielsweise die Schichtdicke des vorderen optisch transparenten, elektrisch leitfähigen Oxids (TCO) oder die Breite von monolithisch verschalteten Zellen. Die Bestimmung des Optimums dieser mehrdimensionalen Abwägungen zwischen optischer Transparenz, elektrischer Leitfähigkeit und geometrisch inaktiver Fläche zwischen den einzelnen Zellen ist ein Hauptmerkmal der Methodik dieser Arbeit. Mittels des FEM-Ansatzes dieser Arbeit ist es möglich, alle gegenseitigen Wechselwirkungen über verschiedene physikalische Ebenen hinweg zu berücksichtigen und ein ganzheitlich optimiertes Moduldesign zu finden. Auch topologisch komplexere Probleme, wie das Finden eines geeigneten Designs für das Metallisierungsgitter, können auf Grundlage der Simulation mittels der Methode der Topologie-Optimierung (TO) gelöst werden. In dieser Arbeit wurde das TO-Verfahren zum ersten Mal für monolithisch integrierte Zellen eingesetzt. Darüber hinaus wurde gezeigt, dass sowohl einfache Optimierungen der TCO-Schichtdicken als auch Topologie-Optimierungen stark von den vorherrschenden Beleuchtungsverhältnissen abhängen. Daher ist eine Optimierung auf den Jahresertrag anstelle des Laborwirkungsgrades für industrienahe Anwendungen wesentlich sinnvoller, da die mittleren Jahreseinstrahlungen deutlich von den Laborbedingungen abweichen. Mit Hilfe dieser Ertragsoptimierung wurde in dieser Arbeit für die Kupfer-Indium-Gallium-Diselenid CuIn1x_{1-x}Gax_xSe2_2 (CIGS)-Technologie ein Leistungsgewinn von über 1 % im Ertrag für einige geografische Standorte und gleichzeitig eine Materialeinsparung für die Metallisierungs- und TCO-Schicht von bis zu 50 % errechnet. Mit Hilfe der numerischen Simulationen dieser Arbeit können alle denkbaren technologischen Verbesserungen auf Modulebene in das Modell eingebracht werden. Auf diese Weise wurde das aktuelle technologische Limit für CIGS-Dünnschicht-Solarmodule berechnet. Unter Verwendung der Randbedingungen der derzeit verfügbaren Materialien, Technologie- und Fertigungstoleranzen und des derzeit besten in der Literatur veröffentlichten CIGS-Materials ergibt sich ein theoretisches Wirkungsgradmaximum von 24 % auf Modulebene. Das derzeit beste veröffentlichte Modul mit den gegebenen Restriktionen weist einen Wirkungsgrad von 19,2 % auf [1]. Verbessert sich der CIGS-Absorber vergleichbar mit jenem von Galliumarsenid (GaAs) im Hinblick auf dessen Rekombinationsrate, ergibt sich ein erhöhtes Wirkungsgradlimit von etwa 28 %. Im Falle eines idealen CIGS-Absorbers ohne intrinsische Rekombinationsverluste wird in dieser Arbeit eine maximale Effizienzobergrenze von 29 % berechnet

    Microwave investigations on SrTiO3-based materials at mK temperatures

    Get PDF
    Strontiumtitanat (STO) ist ein Halbleiter, der unter einer bestimmten n-Dotierung bei Milli KelvinTemperaturen (mK) einen Phasenübergang in den supraleitenden Zustand aufweist. Es war damit einer der ersten ”supraleitenden Halbleiter” und zugleich der erste Oxid-Supraleiter, der unter anderem die mit dem Nobel-Preis 1987 ausgezeichnete Entdeckung von Hochtemperatur-Supraleitern vorantrieb. Darüber hinaus wurde zum ersten Mal ein sogenanntes dome-förmiges Verhalten als Funktion der Dotierung festgestellt, welches durch eine Reduktion an Sauerstoffatomen oder eine Ersetzung von Titanatomen durch Niobatome (Nb-STO) erzielt wird. Die hierfür benötigten Ladungsträgerdichten und die damit verbunden Energieskalen sind verhältnismäßig klein und schränken damit die Anzahl an möglichen Kopplungsmechanismen der Cooperpaare erheblich ein. Dies ist nicht in Einklang mit der BCS-Theorie zu bringen und bis zum heutigen Tag nicht vollständig verstanden, weshalb STO ein aktuelles Forschungsthema darstellt. An der Grenzschicht zu Lanthan Aluminiumoxid (LAO) weist STO ein zweidimensionales Elektronengas extrem mobiler, freier Ladungsträger auf, das ebenfalls einen supraleitenden Ubergang bei mK- Temperaturen zeigt. Wie auch in STO selbst ist die Supraleitung dort dome-förmig und entstammt mehreren elektronischen Bändern. Diese Arbeit soll unter anderem auch zum Verständnis der Supraleitung an der LAO-STO-Grenzschicht beitragen. Hierfür sollen die elektronischen Bandeigenschaften und mit besonderem Schwerpunkt die effektiven Massen der bei mK-Temperaturen zur Supraleitung beitragenden Elektronen untersucht werden. Zur direkten Messung dieser bietet sich die Methode der Zyklotronresonanz an, bei der durch ein extern angelegtes Magnetfeld Leitungselektronen in definierte Laundauniveaus gequantelt werden und deren Ubergang mit entsprechenden Energien im µeV-Bereich angeregt wird. Eine der Hauptherausforderungen dieser Messmethode liegt in der Notwendigkeit einer höheren Messfrequenz als die Streurate, was nur für sehr reine Metalle im genannten Energiebereich erreicht werden kann. Die hierzu nötige Mikrowellenstrahlung wird mittels koplanarer und streifenleitenden Wellenleitern übertragen und deren Transmissionssignal analysiert. Um ein entsprechendes, der Zyklotronresonanz zuzuschreibendes Messsignal vorzufinden, wurden mehrere Experimente durchgeführt. Eines von diesen beinhaltet Anzeichen eines Zyklotron-Messsignals. Obwohl dieses Ergebnis nicht reproduziert werden konnte und damit dessen Verlässlichkeit in Frage zu stellen ist, gingen Messwerte aus dieser hervor, die effektive Massen zwischen 3 und 4 Elektronenmassen und Streuraten zwischen 9 und 10 GHz ergaben, was mit publizierter Literatur in Einklang steht. Außerdem wurden Messungen der komplexen, optischen Leitfähigkeit innerhalb des supraleitenden domes von Nb-STO durchgeführt. Mit diesen ist es möglich, zwei zur effektive Masse korrelierte Kohärenzlängen zu bestimmen und dadurch das Verhältnis beider Massen der zur Supraleitung beitragenden Elektronen zu bestimmen. Darüber hinaus wurden diese Daten noch genutzt, um einige andere charakteristische Eigenschaften wie die mittlere, freie Wegl¨ange, die Fermigeschwindigkeit von beiden supraleitenden Bändern und die suprafluide Dichte zu bestimmen. Letztere wurde zur Berechnung der London’schen Eindringtiefe und des Ginzburg-Landau-Parameters genutzt, die die Zugehörigkeit zur Klasse der Typ-II-Supraleiter von Nb-STO bestätigen. Des Weiteren legt der Vergleich der Kohärenzlänge mit der mittleren freien Weglänge und die Einordnung von Nb-STO in das Home’sche Gesetz ein dirty limit-Verhalten für Supraleiter nahe. All diese Eigenschaften sind starke Anzeichen für ein Mehrband-Supraleiter mit lediglich einer Energielücke in Nb-STO

    DLTS investigations on CIGS solar cells from an inline co-evaporation system with RbF post-deposition treatment

    Get PDF
    In this study, Deep Level Transient Spectroscopy (DLTS) measurements have been performed on Cu(In,Ga)Se2_{2} (CIGS) solar cells from an inline co-evaporation system. The focus of this investigation is directed on the effect of rubidium-fluoride (RbF)-post-deposition treatment (PDT) on the defects in the CIGS absorber layer. Different traps can be identified and their properties are calculated. Herein, different methods of evaluations have been used to verify the results. Specifically, one minority trap around 400 meV was found to show a significant reduction of the trap density due to the alkali treatment. In contrast, a majority trap at approximately 600 meV is unaffected

    Irradiation-dependent topology optimization of metallization grid patterns and variation of contact layer thickness used for latitude-based yield gain of thin-film solar modules

    Get PDF
    We show that the concept of topology optimization for metallization grid patterns of thin-film solar devices can be applied to monolithically integrated solar cells. Different irradiation intensities favor different topological grid designs as well as a different thickness of the transparent conductive oxide (TCO) layer. For standard laboratory efficiency determination, an irradiation power of 1000W/m2^{2} is generally applied. However, this power rarely occurs for real-world solar modules operating at mid-latitude locations. Therefore, contact layer thicknesses and also lateral grid patterns should be optimized for lower irradiation intensities. This results in material production savings for the grid and TCO layer of up to 50 % and simultaneously a significant gain in yield of over 1% for regions with a low annual mean irradiation

    Frequency- and temperature-dependent microwave properties of superconducting samples in Corbino geometry

    No full text
    Aufbauend auf der Staatsexamensarbeit von Markus Bader beschäftigt sich diese Bachelorarbeit mit Oszillationen des komplexwertigen Reflexionskoeffizienten als Funktion der Frequenz bei supraleitenden Proben in Corbino-Geometrie. Zur Messung verwendet wurde ein Durchflusskryostat mit angeschlossenem Netzwerkanalysator, Temperaturcontroller und Gleichstromwiderstandsmessgerät. Dieser Aufbau erlaubt Messungen bis zu ca. 14 K und ein Frequenzspektrum von 300 kHz bis 20 GHz. Bestätigt werden konnte, dass die Intensität der Oszillationen gleichermaßen von der Probentemperatur und der verwendeten Leistung der Mikrowellenstrahlung abhängt, nicht jedoch von dessen Zeitfrequenz. In dieser Arbeit konnte die Ursache der genannten Schwingungen stehenden Wellen in den zur Probe führenden Koaxialkabeln zugeordnet werden. Dies wird unter anderem durch die lineare Zunahme der Zeitfrequenz als Funktion einer steigenden Kabellänge in Abbildung 5.17 deutlich bestätigt. Durch die Ausbildung der bereits erwähnten Stehwellen nur bei diskreten Frequenzen der Mikrowellen heizt sich die Probe für diese auf und bleibt kälter bei Frequenzen, die nicht zur Kabellänge passen. Diese Aquivalenz des Reflexions-spektrums mit der Temperatur ist stellvertretend mit dem Gleichstromwiderstand statt der Temperatur in Abbildung 5.20 zu sehen. Da diese Erklärung der Oszillationen sich nicht auf eine supraleitende Reflexionscharakteristik im Speziellen beruft, wurde neben dem bisher verwendeten NbTiN auch der Supraleiter YBCO auf die gleiche Art gemessen. Dies führte zu denselben Ergebnissen, die jedoch nicht so stark wie bei den NbTiN-Proben ausgeprägt waren. Um letztendlich die völlige Unabhängigkeit von supraleitenden Übergängen zu zeigen, wurden eine defekte Magnesiumdiborid-Probe, deren Gleichstromwiderstand mit sinkender Temperatur steigt, und eine Vanadiumdioxid-Probe, die bei ca. 67°C einen Übergang vom Isolator zum metallischen Leiter aufweist, ebenfalls gemessen. Auch hier traten dieselben Oszillationen mit denselben Zeitfrequenzen wie bei den supraleitenden Proben auf. Der Effekt dieser Schwingungen beruht also lediglich auf einem großen Gradienten des Gleichstromwiderstandes als Funktion der Temperatur, nicht jedoch auf supraleitenden Effekten. Sowohl bei Messungen aus dem eigenen Institut als auch bei Messungen externer Institute traten bei verschiedensten Supraleitern ebenfalls die gleichen Reflexionsoszillationen nahe der kritischen Temperatur auf. Dadurch, dass alle Kalibrierungsmessungen für Corbino-Messungen mit Materialien durchgeführt werden, deren Widerstand als Funktion der Temperatur konstant bleibt, ist es mit einer herkömmlichen Open-Short-Load-Kalibrierung nicht möglich, diese Oszillationen auszulöschen, da keine der drei Referenzmessungen einen derartigen Sprung in der Widerstandskurve aufweist. Eine Möglichkeit, die spektrumsverzerrenden Schwingungen dennoch loszuwerden, ist die Methode der sogenannten Powerflatness, die bei einigen Netzwerkanalysatoren eingestellt werden kann. Sie sorgt regeltechnisch mittels eines Leistungssensors dafür, dass an der Probe für jeden Frequenzpunkt die gleiche Leistung ankommt. Es ist somit nicht mehr die Ausgangsleistung des Netzwerkanalysators konstant, sondern die Leistung an der Probe selbst. Die Stehwellen an sich werden damit zwar nicht unterbunden, jedoch deren Intensität so variiert, dass deren Ausprägungsstärke in das kontinuierliche Leistungsspektrum passt und die Reflexionscharakteristika der Probe nicht mehr durch Temperaturschwankungen verfälscht werden. Da jedes Kabel jedoch seine eigene spezifische Oszillationsperiodenlänge besitzt, musste die Powerflatness für jeden Kabeltypen neu kalibriert werden

    Holistic yield modeling, top-down loss analysis, and efficiency potential study of thin-film solar modules

    Get PDF
    Precise modelling of solar cells devices under various conditions is essential to guide improvements in optimisation and performance of future technologies. Here, the authors present a holistic numerical model, verified with real-world data of thin-film CIGS modules, that can conduct loss analysis and predict the energy yield of thin film solar cells

    Irradiation-dependent topology optimization of metallization grid patterns and variation of contact layer thickness used for latitude-based yield gain of thin-film solar modules

    Get PDF
    Abstract: We show that the concept of topology optimization for metallization grid patterns of thin-film solar devices can be applied to monolithically integrated solar cells. Different irradiation intensities favor different topological grid designs as well as a different thickness of the transparent conductive oxide (TCO) layer. For standard laboratory efficiency determination, an irradiation power of 1000W/m2 is generally applied. However, this power rarely occurs for real-world solar modules operating at mid-latitude locations. Therefore, contact layer thicknesses and also lateral grid patterns should be optimized for lower irradiation intensities. This results in material production savings for the grid and TCO layer of up to 50 % and simultaneously a significant gain in yield of over 1% for regions with a low annual mean irradiation. Graphical Abstract: [Figure not available: see fulltext.]Numerical Analysi
    corecore