19,637 research outputs found

    Spatially resolved photo ionization of ultracold atoms on an atom chip

    Full text link
    We report on photo ionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μ\mu K in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μ\mu m two laser beams are focussed onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photo ionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is not only suitable to investigate BEC ion mixtures but also single atom detection on an atom chip

    Combined chips for atom-optics

    Get PDF
    We present experiments with Bose-Einstein condensates on a combined atom chip. The combined structure consists of a large-scale "carrier chip" and smaller "atom-optics chips", containing micron-sized elements. This allows us to work with condensates very close to chip surfaces without suffering from fragmentation or losses due to thermally driven spin flips. Precise three-dimensional positioning and transport with constant trap frequencies are described. Bose-Einstein condensates were manipulated with submicron accuracy above atom-optics chips. As an application of atom chips, a direction sensitive magnetic field microscope is demonstrated.Comment: 9 pages, 9 figure

    Evidence for coordinated induction and repression of ecto-5'-nucleotidase (CD73) and the A2a adenosine receptor in a human B cell line

    Get PDF
    In the human B cell line P493-6 two mitogenic signals, the EpsteinBarr virus nuclear antigen 2 (EBNA2) and myc, can be independently regulated by means of an estrogen receptor fusion construct or an inducible expression vector, respectively. Shut off of EBNA2, either in the presence or absence of myc, leads to a significant increase in enzymatic activity and surface expression of ecto-5nucleotidase (CD73) as well as an increased adenosine receptor response in cyclic AMP formation. Shut off of myc expression has a small additional positive effect on CD73 activity. Among the four different subtypes of adenosine receptors, the A2a receptor exclusively is subject to regulation in this system, which is substantiated by pharmacologic data (specific agonists and inhibitors), as well as on the mRNA level. With upregulated CD73 and A2a, cells also respond to 5AMP with increased cyclic AMP formation. Turn on of EBNA2 has the reverse effect of repression of CD73 and A2a expression. The time course of both induction and repression of CD73 and A2a is rather slow

    Enhanced charge stripe order of superconducting La(2-x)Ba(x)CuO(4) in a magnetic field

    Full text link
    The effect of a magnetic field on the charge stripe order in La(2-x)Ba(x)CuO(4) has been studied by means of high energy (100 keV) x-ray diffraction for charge carrier concentrations ranging from strongly underdoped to optimally doped. We find that charge stripe order can be significantly enhanced by a magnetic field applied along the c-axis, but only at temperatures and dopings where it coexists with bulk superconductivity at zero field. The field also increases stripe correlations between the planes, which can result in an enhanced frustration of the interlayer Josephson coupling. Close to the famous x=1/8 compound, where zero field stripe order is pronounced and bulk superconductivity is suppressed, charge stripe order is independent of a magnetic field. The results imply that static stripe order and three-dimensionally coherent superconductivity are competing ground states.Comment: 6 pages, 4 figure

    The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil

    Full text link
    The critical-velocity behavior of oscillatory superfluid Helium-4 flow through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during which the frequency remained below 400 Hz, the critical velocity was a nearly-linearly decreasing function of increasing temperature throughout the region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi phase slips could be observed at the onset of dissipation. In runs with frequencies higher than 400 Hz, downward curvature was observed in the decrease of critical velocity with increasing temperature. In addition, above 500 Hz an alteration in supercritical behavior was seen at the lower temperatures, involving the appearance of large energy-loss events. These irregular events typically lasted a few tens of half-cycles of oscillation and could involve hundreds of times more energy loss than would have occurred in a single complete 2 Pi phase slip at maximum flow. The temperatures at which this altered behavior was observed rose with frequency, from ~ 0.6 K and below, at 500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203

    Spin dynamics and magnetic interactions of Mn dopants in the topological insulator Bi2_2Te3_3

    Full text link
    The magnetic and electronic properties of the magnetically doped topological insulator Bi2−x_{\rm 2-x}Mnx_{\rm x}Te3_3 were studied using electron spin resonance (ESR) and measurements of static magnetization and electrical transport. The investigated high quality single crystals of Bi2−x_{\rm 2-x}Mnx_{\rm x}Te3_3 show a ferromagnetic phase transition for x≥0.04x\geq 0.04 at TC≈12T_{C}\approx 12 K. The Hall measurements reveal a p-type finite charge-carrier density. Measurements of the temperature dependence of the ESR signal of Mn dopants for different orientations of the external magnetic field give evidence that the localized Mn moments interact with the mobile charge carriers leading to a Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling between the Mn spins of order 2-3 meV. Furthermore, ESR reveals a low-dimensional character of magnetic correlations that persist far above the ferromagnetic ordering temperature

    Diffraction of a Bose-Einstein condensate from a Magnetic Lattice on a Micro Chip

    Full text link
    We experimentally study the diffraction of a Bose-Einstein condensate from a magnetic lattice, realized by a set of 372 parallel gold conductors which are micro fabricated on a silicon substrate. The conductors generate a periodic potential for the atoms with a lattice constant of 4 microns. After exposing the condensate to the lattice for several milliseconds we observe diffraction up to 5th order by standard time of flight imaging techniques. The experimental data can be quantitatively interpreted with a simple phase imprinting model. The demonstrated diffraction grating offers promising perspectives for the construction of an integrated atom interferometer.Comment: 4 pages, 4 figure
    • …
    corecore