40 research outputs found

    Comparison of high and low intensity contact between secondary and primary care to detect people at ultra-high risk for psychosis: study protocol for a theory-based, cluster randomized controlled trial.

    Get PDF
    BACKGROUND: The early detection and referral to specialized services of young people at ultra-high risk (UHR) for psychosis may reduce the duration of untreated psychosis and, therefore, improve prognosis. General practitioners (GPs) are usually the healthcare professionals contacted first on the help-seeking pathway of these individuals. METHODS/DESIGN: This is a cluster randomized controlled trial (cRCT) of primary care practices in Cambridgeshire and Peterborough, UK. Practices are randomly allocated into two groups in order to establish which is the most effective and cost-effective way to identify people at UHR for psychosis. One group will receive postal information about the local early intervention in psychosis service, including how to identify young people who may be in the early stages of a psychotic illness. The second group will receive the same information plus an additional, ongoing theory-based educational intervention with dedicated liaison practitioners to train clinical staff at each site. The primary outcome of this trial is count data over a 2-year period: the yield - number of UHR for psychosis referrals to a specialist early intervention in psychosis service - per primary care practice. DISCUSSION: There is little guidance on the essential components of effective and cost-effective educational interventions in primary mental health care. Furthermore, no study has demonstrated an effect of a theory-based intervention to help GPs identify young people at UHR for psychosis. This study protocol is underpinned by a robust scientific rationale that intends to address these limitations. TRIAL REGISTRATION: Current Controlled Trials ISRCTN70185866.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Genetic Optimization of the Catalytic Efficiency of Artificial Imine Reductases Based on the Biotin-Streptavidin Technology

    No full text
    Artificial metalloenzymes enable the engineering of the reaction microenvironment of the active metal catalyst by modification of the surrounding host protein. We report herein the optimization of an artificial imine reductase (ATHase) based on biotin–streptavidin technology. By introduction of lipophilic amino acid residues around the active site, an 8-fold increase in catalytic efficiency compared with the wild type imine reductase was achieved. Whereas substrate inhibition was encountered for the free cofactor and wild type ATHase, two engineered systems exhibited classical Michaelis–Menten kinetics, even at substrate concentrations of 150 mM with measured rates up to 20 min–1

    Novel Antioxidants Protect Mitochondria from the Effects of Oligomeric Amyloid Beta and Contribute to the Maintenance of Epigenome Function

    No full text
    Alzheimer’s disease is associated with metabolic deficits and reduced mitochondrial function, with the latter due to the effects of oligomeric amyloid beta peptide (AβO) on the respiratory chain. Recent evidence has demonstrated reduction of epigenetic markers, such as DNA methylation, in Alzheimer’s disease. Here we demonstrate a link between metabolic and epigenetic deficits via reduction of mitochondrial function which alters the expression of mediators of epigenetic modifications. AβO-induced loss of mitochondrial function in differentiated neuronal cells was reversed using two novel antioxidants (<b>1</b> and <b>2</b>); both have been shown to mitigate the effects of reactive oxygen species (ROS), and compound <b>1</b> also restores adenosine triphosphate (ATP) levels. While both compounds were effective in reducing ROS, restoration of ATP levels was associated with a more robust response to AβO treatment. Our in vitro system recapitulates key aspects of data from Alzheimer’s brain samples, the expression of epigenetic genes in which are also shown to be normalized by the novel analogues
    corecore