2 research outputs found

    High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique

    Get PDF
    Background: Epidemiological data of cephalosporin-resistant Enterobacterales in Sub-Saharan Africa is still restricted,and in particular in Mozambique. The aim of this study was to detect and characterize extended-spectrum β-lactamase (ESBL) - and plasmid-mediated AmpC (pAmpC)-producing clinical strains of Escherichia coli at Maputo Central Hospital (MCH), a 1000-bed reference hospital in Maputo, Mozambique. Methods: A total of 230 clinical isolates of E. coli from urine (n = 199) and blood cultures (n = 31) were collected at MCH during August–November 2015. Antimicrobial susceptibility testing was performed by the disc diffusion method and interpreted according to EUCAST guidelines. Isolates with reduced susceptibility to 3rd generation cephalosporins were examined further; phenotypically for an ESBL−/AmpC-phenotype by combined disc methods and genetically for ESBL- and pAmpC-encoding genes by PCR and partial amplicon sequencing as well as genetic relatedness by ERIC-PCR. Results: A total of 75 isolates with reduced susceptibility to cefotaxime and/or ceftazidime (n = 75) from urine (n = 58/199; 29%) and blood (n = 17/31; 55%) were detected. All 75 isolates were phenotypically ESBL-positive and 25/75 (33%) of those also expressed an AmpC-phenotype. ESBL-PCR and amplicon sequencing revealed a majority of blaCTX-M (n = 58/75; 77%) dominated by blaCTX-M-15. All AmpC-phenotype positive isolates (n = 25/75; 33%) scored positive for one or more pAmpC-genes dominated by blaMOX/FOX. Multidrug resistance (resistance ≥ three antibiotic classes) was observed in all the 75 ESBL-positive isolates dominated by resistance to trimethoprimsulfamethoxazole, ciprofloxacin and gentamicin. ERIC-PCR revealed genetic diversity among strains with minor clusters indicating intra-hospital spread. Conclusion: We have observed a high prevalence of MDR pAmpC- and/or ESBL-producing clinical E. coli isolates with FOX/MOX and CTX-Ms as the major β-lactamase types, respectively. ERIC-PCR analyses revealed genetic diversity and some clusters indicating within-hospital spread. The overall findings strongly support the urgent need for accurate and rapid diagnostic services to guide antibiotic treatment and improved infection control measures

    Faecal colonization of E. coli and Klebsiella spp. producing extended-spectrum beta-lactamases and plasmid-mediated AmpC in Mozambican university students

    Get PDF
    Background: In recent years, the world has seen a surge in Enterobacteriaceae resistant to broad-spectrum beta-lactam antibiotics due to the production of extended-spectrum beta-lactamases (ESBLs) or plasmid-mediated AmpC (pAmpC) enzymes. Data on the epidemiology of cephalosporin-resistant Enterobacteriaceae in Sub-Saharan Africa are still limited. Methods: Two hundred seventy-five non-repetitive stool samples were collected from Mozambican university students of both sexes. Samples were cultured on MacConkey agar with and without ceftriaxone (1 mg/L) for selection of third-generation cephalosporin-resistant isolates, which were subjected to antimicrobial susceptibility testing by disc diffusion, characterization of resistance genes by PCR and ERIC-PCR analysis for strain clonality. Results: Among the 275 students, 55 (20%) carried a total of 56 E. coli (n = 35) and Klebsiella spp. (n = 21) isolates resistant to ceftriaxone and phenotypically positive for ESBL- and/or pAmpC-production. Forty-three percent of the isolates (24/56) contained only ESBL genes, 11% (6/56) only pAmpC genes, and 36% (20/56) both ESBL and pAmpC genes. The remaining six isolates were negative for the CTX-M/pAmpC genes included in the test panel. E. coli and Klebsiella spp. combined demonstrated 70% resistance to tetracycline and co-trimoxazole, 63% to ceftazidime and 34% to ciprofloxacin. In total, 89% of ESBL/pAmpC-positive isolates were defined as multi-resistant by being resistant to three or more antibiotic classes. ERIC-PCR fingerprinting demonstrated low similarity among isolates. None of the participants reported recent hospitalization and just 12.5% had taken antibiotics 3 months prior to the study. Conclusion: This study demonstrated 20% colonization with multi-resistant E. coli and Klebsiella spp. among Mozambican students with a diversity of ESBL and pAmpC genes. Colonization was not related to prior hospitalization or antimicrobial consumption
    corecore