5 research outputs found

    Cross-Species Single-Cell Analysis Reveals Divergence of the Primate Microglia Program

    Get PDF
    Summary Microglia, the brain-resident immune cells, are critically involved in many physiological and pathological brain processes, including neurodegeneration. Here we characterize microglia morphology and transcriptional programs across ten species spanning more than 450 million years of evolution. We find that microglia express a conserved core gene program of orthologous genes from rodents to humans, including ligands and receptors associated with interactions between glia and neurons. In most species, microglia show a single dominant transcriptional state, whereas human microglia display significant heterogeneity. In addition, we observed notable differences in several gene modules of rodents compared with primate microglia, including complement, phagocytic, and susceptibility genes to neurodegeneration, such as Alzheimer’s and Parkinson’s disease. Our study provides an essential resource of conserved and divergent microglia pathways across evolution, with important implications for future development of microglia-based therapies in humans

    Functional MRI of murine olfactory bulbs at 15.2T reveals characteristic activation patters when stimulated by different odors

    No full text
    Abstract Thanks to its increased sensitivity, single-shot ultrahigh field functional MRI (UHF fMRI) could lead to valuable insight about subtle brain functions such as olfaction. However, UHF fMRI experiments targeting small organs next to air voids, such as the olfactory bulb, are severely affected by field inhomogeneity problems. Spatiotemporal Encoding (SPEN) is an emerging single-shot MRI technique that could provide a route for bypassing these complications. This is here explored with single-shot fMRI studies on the olfactory bulbs of male and female mice performed at 15.2T. SPEN images collected on these organs at a 108 µm in-plane resolution yielded remarkably large and well-defined responses to olfactory cues. Under suitable T2* weightings these activation-driven changes exceeded 5% of the overall signal intensity, becoming clearly visible in the images without statistical treatment. The nature of the SPEN signal intensity changes in such experiments was unambiguously linked to olfaction, via single-nostril experiments. These experiments highlighted specific activation regions in the external plexiform region and in glomeruli in the lateral part of the bulb, when stimulated by aversive or appetitive odors, respectively. These strong signal activations were non-linear with concentration, and shed light on how chemosensory signals reaching the olfactory epithelium react in response to different cues. Second-level analyses highlighted clear differences among the appetitive, aversive and neutral odor maps; no such differences were evident upon comparing male against female olfactory activation regions

    Nucleus Accumbens Dopamine Signaling Regulates Sexual Preference for Females in Male Mice

    No full text
    Sexual preference for the opposite sex is a fundamental behavior underlying reproductive success, but the neural mechanisms remain unclear. Here, we examined the role of dopamine signaling in the nucleus accumbens core (NAcc) in governing chemosensory-mediated preference for females in TrpC2−/− and wild-type male mice. TrpC2−/− males, deficient in VNO-mediated signaling, do not display mating or olfactory preference toward females. We found that, during social interaction with females, TrpC2−/− males do not show increased NAcc dopamine levels, observed in wild-type males. Optogenetic stimulation of VTA-NAcc dopaminergic neurons in TrpC2−/− males during exposure to a female promoted preference response to female pheromones and elevated copulatory behavior toward females. Additionally, we found that signaling through the D1 receptor in the NAcc is necessary for the olfactory preference for female-soiled bedding. Our study establishes a critical role for the mesolimbic dopaminergic system in governing pheromone-mediated responses and mate choice in male mice
    corecore