18 research outputs found

    Switching of the Microglial Activation Phenotype Is a Possible Treatment for Depression Disorder

    Get PDF
    Major depressive disorder (MDD) is a common emotional cognitive disorder that seriously affects peopleā€™s physical and mental health and their quality of life. Due to its clinical and etiological heterogeneity, the molecular mechanisms underpinning MDD are complex and they are not fully understood. In addition, the effects of traditional drug therapy are not ideal. However, postmortem and animal studies have shown that overactivated microglia can inhibit neurogenesis in the hippocampus and induce depressive-like behaviors. Nonetheless, the molecular mechanisms by which microglia regulate nerve regeneration and determine depressive-like behaviors remain unclear. As the immune cells of the central nervous system (CNS), microglia could influence neurogenesis through the M1 and M2 subtypes, and these may promote depressive-like behaviors. Microglia may be divided into four main states or phenotypes. Under stress, microglial cells are induced into the M1 type, releasing inflammatory factors and causing neuroinflammatory responses. After the inflammation fades away, microglia shift into the alternative activated M2 phenotypes that play a role in neuroprotection. These activated M2 subtypes consist of M2a, M2b and M2c and their functions are different in the CNS. In this article, we mainly introduce the relationship between microglia and MDD. Importantly, this article elucidates a plausible mechanism by which microglia regulate inflammation and neurogenesis in ameliorating MDD. This could provide a reliable basis for the treatment of MDD in the future

    Mineralization of organic matter in microbialites and implications for microbialite reservoirs in Member IV of the Leikoupo Formation, Sichuan Basin, China

    Get PDF
    Microbialites are important reservoirs for oil and gas. The mineralization of organic matter in microbialites during early diagenesis can produce acidic fluids that dissolve carbonate grains, and can also result in an alkaline pore water that precipitates cement. The mineralization of organic matter in microbialites and its effect on microbialite reservoirs have not yet been studied in detail. In this study, quantitative statistical analysis of the two-dimensional spatial occurrence of pores and microbial fabrics, in situ geochemical analysis of specific components (microbial, transitional zone, and fine spar fabrics), and qualitative evaluation of the implications for microbialite reservoirs were undertaken on microbialites from Member IV of the Leikoupo Formation, Sichuan Basin, China. The quantitative statistical analysis shows that pores are spatially associated with microbial fabrics, but porosity has a poor correlation with microbial fabric content. In situ geochemical data indicate that microbialites with different porosities experienced different processes of organic matter mineralization. The processes of organic matter mineralization such as oxidation and nitrate reduction can provide more dissolution micropores than the process related with sulfate reduction, whereas the process of organic matter mineralization related with Feā€“Mn oxide reduction results in cementation. Micropores created by organic matter mineralization can act as fluid channels for later dissolution and are important in the development of microbialite reservoirs

    Study on the Fluorescent Activity of N2-Indolyl-1,2,3-triazole

    No full text
    A new type of blue emitter, N2-Indolyl-1,2,3-triazoles (NITs), with the Ī»max ranging from 420ā€“480 nm and the Stokes shift from 89ā€“143 nm, were synthesized through the coupling reaction of indoles with triazole derivatives. The influence of different substitution patterns on the optical properties (efficiency, excitation, and emission wavelengths) of the NITs was investigated. In addition, one palladium complex were synthesized by using NITs as the ligands, which, however, exhibited no fluorescent activity, but did show the enhanced co-planarity. Lastly, two bio-active molecule derivatives were explored for the potential use of these novel dyes in related chemical and biological applications

    Simulation Study on the Structure Design of p-GaN/AlGaN/GaN HEMT-Based Ultraviolet Phototransistors

    No full text
    This work investigates the impacts of structural parameters on the performances of p-GaN/AlGaN/GaN HEMT-based ultraviolet (UV) phototransistors (PTs) using Silvaco Atlas. The simulation results show that a larger Al content or greater thickness for the AlGaN barrier layer can induce a higher two-dimensional electron gas (2DEG) density and produce a larger photocurrent. However, they may also lead to a larger dark current due to the incomplete depletion of the GaN channel layer. The depletion conditions with various Al contents and thicknesses of the AlGaN layer are investigated in detail, and a borderline between full depletion and incomplete depletion was drawn. An optimized structure with an Al content of 0.23 and a thickness of 14 nm is achieved for UV-PT, which exhibits a high photocurrent density of 92.11 mA/mm, a low dark current density of 7.68 Ɨ 10āˆ’10 mA/mm, and a large photo-to-dark-current ratio of over 1011 at a drain voltage of 5 V. In addition, the effects of other structural parameters, such as the thickness and hole concentration of the p-GaN layer as well as the thickness of the GaN channel layer, on the performances of the UV-PTs are also studied in this work

    Gut microbiota regulate stress resistance by influencing microglia-neuron interactions in the hippocampus

    No full text
    Communication among the brain, gut and microbiota in the gut is known to affect the susceptibility to stress, but the mechanisms involved are unclear. Here we demonstrated that stress resistance in mice was associated with more abundant Lactobacillus and Akkermansia in the gut, but less abundant Bacteroides, Alloprevotella, Helicobacter, Lachnoclostridium, Blautia, Roseburia, Colidextibacter and Lachnospiraceae NK4A136. Stress-sensitive animals showed higher permeability and stronger immune responses in their colon, as well as higher levels of pro-inflammatory cytokines in serum. Their hippocampus also showed more extensive microglial activation, abnormal interactions between microglia and neurons, and lower synaptic plasticity. Transplanting fecal microbiota from stress-sensitive mice into naĆÆve ones perturbed microglia-neuron interactions and impaired synaptic plasticity in the hippocampus, translating to more depression-like behavior after stress exposure. Conversely, transplanting fecal microbiota from stress-resistant mice into naĆÆve ones protected microglia from activation and preserved synaptic plasticity in the hippocampus, leading to less depression-like behavior after stress exposure. These results suggested that gut microbiota may influence resilience to chronic psychological stress by regulating microglia-neuron interactions in the hippocampus
    corecore