167 research outputs found

    Cell Therapy Must Be Regulated as Medicine

    Get PDF
    Background The current standard of care for relapsed and refractory acute lymphoblastic leukemia (ALL) is combination chemotherapy. Case presentation We report a case of highly refractory ALL who was treated with blinatumomab. The ALL in this patient relapsed within a month after completion of hyperCVAD regimen and was refractory to high dose mitoxantrone/cytarabine and CLAG regimens. Conclusion This highly refractory pre-B Phβˆ’ ALL was induced to complete remission after one course of single agent blinatumomab

    Unfolded protein response in cancer: the Physician\u27s perspective

    Get PDF
    Abstract The unfolded protein response (UPR) is a cascade of intracellular stress signaling events in response to an accumulation of unfolded or misfolded proteins in the lumen of the endoplasmic reticulum (ER). Cancer cells are often exposed to hypoxia, nutrient starvation, oxidative stress and other metabolic dysregulation that cause ER stress and activation of the UPR. Depending on the duration and degree of ER stress, the UPR can provide either survival signals by activating adaptive and antiapoptotic pathways, or death signals by inducing cell death programs. Sustained induction or repression of UPR pharmacologically may thus have beneficial and therapeutic effects against cancer. In this review, we discuss the basic mechanisms of UPR and highlight the importance of UPR in cancer biology. We also update the UPR-targeted cancer therapeutics currently in clinical trials

    Platelet count correlates with stage and predicts survival in melanoma

    Get PDF
    Cancer is a chronic inflammatory state which is often associated with increased platelet counts. Cancer cells induce thrombopoiesis and activate platelets, which in turn facilitate cancer invasion and metastasis. In this study, we investigate the correlation between platelet counts with each of stage and overall survival in melanoma. This is a retrospective cohort study of 642 melanoma patients diagnosed or treated at a tertiary medical center between 2000 and 2016. Multivariable analysis adjusted for age, sex, stage, and treatment modality. Using multivariable analysis, patients with thrombocytosis around time of diagnosis were more likely to present with distant metastasis (Prevalence Ratio 3.5, 95% CI 2.35–5.22). In patients with metastatic disease and in all stages combined, thrombocytosis predicted decreased 5-year overall survival in univariate and multivariable analysis, and this was most pronounced during the first year after diagnosis. Finally, we show that mice with thrombocytopenia due to the lack of heat shock protein gp96 in their megakaryocytes are protected from melanoma dissemination to the lungs. These findings are concordant with preclinical studies showing a role for platelets in cancer metastasis and suppression of antitumor immunity, further supporting targeting platelets as an adjuvant to immunotherapy in melanoma

    Recent Updates in Cancer Immunotherapy: A Comprehensive Review and Perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing

    Get PDF
    The immune system is the hard-wired host defense mechanism against pathogens as well as cancer. Five years ago, we pondered the question if the era of cancer immunotherapy was upon us (Li et al., Exp Hem Oncol 2013). Exciting progresses have been made at all fronts since then, including (1) sweeping approval of six agents by the US Food and Drug Administration (FDA) to block the PD-1/PD-L1 pathway for treatment of 13 cancer types; (2) a paradigm shifting indication of PD-1 and CTLA4 blockers for the management of a broad class of cancers with DNA mismatch repair defect, the first-ever tissue agnostic approval of cancer drugs; (3) real world practice of adoptive T cell therapy with two CD19-directed chimeric antigen receptor T cell products (CAR-T) for relapsed and/or refractory B cell malignancies including acute lymphoid leukemia and diffuse large B cell lymphoma, signaling the birth of a field now known as synthetic immunology; (4) the award of 2018 Nobel Prize in Physiology and Medicine from the Nobel Committee to Tasuku Honjo and James Allison for their discovery of cancer medicine by inhibition of negative immune regulation ( www.nobelprize.org/prizes/medicine/2018 ); and (5) the emerging new concept of normalizing rather than amplifying anti-tumor immunity for guiding the next wave of revolution in the field of immuno-oncology (IO) (Sanmamed and Chen, Cell 2018).This article will highlight the significant developments of immune-oncology as of October 2018. The US FDA approved indications of all seven immune checkpoint blockers, and two CD19-directed CAR-T products are tabulated for easy references. We organized our discussion into the following sections: introduction, cell therapy, emerging immunotherapeutic strategies, expediting oncology drug development in an era of breakthrough therapies, new concepts in cancer immunology and immunotherapy, and concluding remarks. Many of these topics were covered by the 2018 China Cancer Immunotherapy Workshop in Beijing, the fourth annual conference co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), China FDA (CFDA; now known as China National Medical Product Administration (NMPA)), and the Tsinghua University. We significantly expanded our discussion of important IO developments beyond what were covered in the conference, and proposed a new Three Rs conceptual framework for cancer immunotherapy, which is to reverse tolerance, rejuvenate the immune system, and restore immune homeostasis. We conclude that the future of immuno-oncology as a distinct discipline of cancer medicine has arrived

    Preoperative platelet counts and postoperative outcomes in cancer surgery: a multicenter, retrospective cohort study

    Get PDF
    Platelets play roles in malignancy, wound healing, and immunity. Nevertheless, their significance in postoperative outcomes is not established. This is a retrospective cohort study of 100,795 patients undergoing cancer surgery in 2010 and 2014 in >500 hospitals. Patients were stratified into five groups based on preoperative platelet counts. Multivariable logistic regression was used to determine the risk of 30-day mortality, morbidities, readmission, and prolonged hospitalization using the mid-normal group as a reference. We adjusted for demographic variables, comorbidities, and operation complexity. In the 2014 cohort, multivariable analysis showed that mortality was higher in patients with thrombocytopenia (OR 1.49, 95% CI [1.23–1.81]), high-normal platelets (OR 1.29, [1.06–1.55]), and thrombocytosis (OR 1.78, [1.45–2.19]). Composite postoperative morbidity followed a similar trend with thrombocytopenia (OR 1.34, [1.25–1.43]), high-normal counts (OR 1.41, [1.33–1.49]), and thrombocytosis (OR 2.20, [2.05–2.36]). Concordantly, the risks of prolonged hospitalization and 30-day readmission followed the same pattern. These results were validated in a large colon cancer cohort from the 2010 database. In conclusion, platelet count is a prognostic indicator in cancer surgeries. This could be related to the role of platelets in wound healing and immunity on one hand, and propagating malignancy on the other

    Heat Shock Protein gp96 Is a Master Chaperone for Toll-like Receptors and Is Important in the Innate Function of Macrophages

    Get PDF
    Summarygp96 is an endoplasmic reticulum chaperone for cell-surface Toll-like receptors (TLRs). Little is known about its roles in chaperoning other TLRs or in the biology of macrophage in vivo. We generated a macrophage-specific gp96-deficient mouse. Despite normal development and activation by interferon-Ξ³, tumor necrosis factor-Ξ±, and interleukin-1Ξ², the mutant macrophages failed to respond to ligands of both cell-surface and intracellular TLRs including TLR2, TLR4, TLR5, TLR7, and TLR9. Furthermore, we found that TLR4 and TLR9 preferentially interacted with a super-glycosylated gp96 species. The categorical loss of TLRs in gp96-deficient macrophages operationally created a conditional and cell-specific TLR null mouse. These mice were resistant to endotoxin shock but were highly susceptible to Listeria monocytogenes. Our results demonstrate that gp96 is the master chaperone for TLRs and that macrophages, but not other myeloid cells, are the dominant source of proinflammatory cytokines during endotoxemia and Listeria infections

    Identification of gp96 as a Novel Target for Treatment of Autoimmune Disease in Mice

    Get PDF
    Heat shock proteins have been implicated as endogenous activators for dendritic cells (DCs). Chronic expression of heat shock protein gp96 on cell surfaces induces significant DC activations and systemic lupus erythematosus (SLE)-like phenotypes in mice. However, its potential as a therapeutic target against SLE remains to be evaluated. In this work, we conducted chemical approach to determine whether SLE-like phenotypes can be compromised by controlling surface translocation of gp96. From screening of chemical library, we identified a compound that binds and suppresses surface presentation of gp96 by facilitating its oligomerization and retrograde transport to endoplasmic reticulum. In vivo administration of this compound reduced maturation of DCs, populations of antigen presenting cells, and activated B and T cells. The chemical treatment also alleviated the SLE-associated symptoms such as glomerulonephritis, proteinuria, and accumulation of anti-nuclear and –DNA antibodies in the SLE model mice resulting from chronic surface exposure of gp96. These results suggest that surface translocation of gp96 can be chemically controlled and gp96 as a potential therapeutic target to treat autoimmune disease like SLE

    The anti-myeloma activity of a novel purine scaffold HSP90 inhibitor PU-H71 is via inhibition of both HSP90A and HSP90B1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heat shock protein 90 (HSP90) inhibitors have emerged as a promising class of anti-cancer drugs in both solid and hematologic malignancies. The HSP90 family includes the cytosolic HSP90 (HSP90AA1), the ER paralogue gp96 (HSP90B1) and the mitochondrial member TRAP1 (HSP90L). We evaluated the <it>in vitro </it>anti-tumor activity and mechanism of action of PU-H71, a novel purine scaffold HSP90 inhibitor in human multiple myeloma cell lines.</p> <p>Methods</p> <p>Multiple human myeloma cell lines including cells that are resistant to corticosteroids and bortezimab were treated with PU-H71, followed by analysis of cell viability, cell cycle progression and apoptosis, by flow cytometry and caspase 3 immunoblot. Induction of unfolded protein response was studied by XBP-1 s immunoblot. The role of gp96 was further assessed by small hairpin RNA knockdown of gp96 before treatment with PU-H71.</p> <p>Results</p> <p>PU-H71 has potent <it>in vitro </it>anti-myeloma activity in both drug-sensitive and drug-resistant cell lines. PU-H71 activates the unfolded protein response and induces caspase-dependent apoptosis. The stable gp96 knockdown human myeloma cell line was found to be more resistant to PU-H71 and other HSP90 inhibitors including 17-AAG and 17-DMAG, even though these cells are more sensitive to conventional anti-myeloma drugs.</p> <p>Conclusion</p> <p>We conclude that PU-H71 is a promising drug for the treatment of myeloma. Our finding further suggests that PU-H71 and the geldanamycin analogues work in part by inhibiting the endoplasmic reticulum gp96 along with the cytosolic HSP90.</p

    Oocyte–Targeted Deletion Reveals That Hsp90b1 Is Needed for the Completion of First Mitosis in Mouse Zygotes

    Get PDF
    Hsp90b1 is an endoplasmic reticulum (ER) chaperone (also named Grp94, ERp99, gp96,Targ2, Tra-1, Tra1, Hspc4) (MGI:98817) contributing with Hspa5 (also named Grp78, BIP) (MGI:95835) to protein folding in ER compartment. Besides its high protein expression in mouse oocytes, little is known about Hsp90b1 during the transition from oocyte-to-embryo. Because the constitutive knockout of Hsp90b1 is responsible for peri-implantation embryonic lethality, it was not yet known whether Hsp90b1 is a functionally important maternal factor.To circumvent embryonic lethality, we established an oocyte-specific conditional knockout line taking advantage of the more recently created floxed Hsp90b1 line (Hsp90b1(flox), MGI:3700023) in combination with the transgenic mouse line expressing the cre recombinase under the control of zona pellucida 3 (ZP3) promoter (Zp3-cre, MGI:2176187). Altered expression of Hsp90b1 in growing oocytes provoked a limited, albeit significant reduction of the zona pellucida thickness but no obvious anomalies in follicular growth, meiotic maturation or fertilization. Interestingly, mutant zygotes obtained from oocytes lacking Hsp90b1 were unable to reach the 2-cell stage. They exhibited either a G2/M block or, more frequently an abnormal mitotic spindle leading to developmental arrest. Despite the fact that Hspa5 displayed a similar profile of expression as Hsp90b1, we found that HSPA5 and HSP90B1 did not fully colocalize in zygotes suggesting distinct function for the two chaperones. Consequently, even if HSPA5 was overexpressed in Hsp90b1 mutant embryos, it did not compensate for HSP90B1 deficiency. Finally, further characterization of ER compartment and cytoskeleton revealed a defective organization of the cytoplasmic region surrounding the mutant zygotic spindle.Our findings demonstrate that the maternal contribution of Hsp90b1 is critical for the development of murine zygotes. All together our data indicate that Hsp90b1 is involved in unique and specific aspects of the first mitosis, which brings together the maternal and paternal genomes on a single spindle
    • …
    corecore