19 research outputs found
Neuroanatomical and functional characterization of CRF neurons of the amygdala using a novel transgenic mouse model
The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. Amygdalar hrGFP-expressing neurons were located primarily in the interstitial nucleus of the posterior limb of the anterior commissure, but also present in the central amygdala. Secondly, the marker of neuronal activation c-Fos was used to explore the response of amygdalar CRF neurons in CRF-hrGFP mice under different experimental paradigms. C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala
LEAP2 changes with body mass and food intake in humans and mice
Acyl-ghrelin administration increases food intake, body weight, and blood glucose. In contrast, mice lacking ghrelin or ghrelin receptors (GHSRs) exhibit life-threatening
hypoglycemia during starvation-like conditions but do not consistently exhibit overt metabolic phenotypes when given ad libitum food access. These results, and findings of
ghrelin resistance in obese states, imply nutritional state-dependence of ghrelin鈥檚 metabolic actions. Here, we hypothesized that LEAP2 (liver enriched antimicrobial
peptide-2), a recently-characterized endogenous GHSR antagonist, blunts ghrelin action during obese states and post-prandially. To test this hypothesis, we determined
changes in plasma LEAP2 and acyl-ghrelin due to fasting, eating, obesity, Roux-en-Y gastric bypass (RYGB), vertical sleeve gastrectomy (VSG), oral glucose administration,
and type 1 diabetes mellitus (T1DM) using humans and/or mice. Our results suggest that plasma LEAP2 is regulated by metabolic status: its levels increase with body mass
and blood glucose, and decrease with fasting, RYGB, and in post-prandial states following VSG. These changes were mostly opposite to those of acyl-ghrelin. Furthermore, using electrophysiology, we showed that LEAP2 both hyperpolarizes and prevents acyl-ghrelin from activating arcuate NPY neurons. We predict that the plasma LEAP2:acyl-ghrelin molar ratio may be a key determinant modulating acyl-ghrelin
activity in response to body mass, feeding status, and blood glucose
GOAT induced ghrelin acylation regulates hedonic feeding
Ghrelin is an orexigenic hormone that regulates homeostatic and reward-related feeding behavior. Recent evidence indicates that acylation of ghrelin by the gut enzyme ghrelin O-acyl transferase (GOAT) is necessary to render ghrelin maximally active within its target tissues. Here we tested the hypothesis that GOAT activity modulates food motivation and food hedonics using behavioral pharmacology and mutant mice deficient for GOAT and the ghrelin receptor (GHSR). We evaluated operant responding following pharmacological administration of acyl-ghrelin and assessed the necessity of endogenous GOAT activity for operant responding in GOAT and GHSR-null mice. Hedonic-based feeding behavior also was examined in GOAT-KO and GHSR-null mice using a "Dessert Effect" protocol in which the intake of a palatable high fat diet "dessert" was assessed in calorically-sated mice. Pharmacological administration of acyl-ghrelin augmented operant responding; notably, this effect was dependent on intact GHSR signaling. GOAT-KO mice displayed attenuated operant responding and decreased hedonic feeding relative to controls. These behavioral results correlated with decreased expression of the orexin-1 receptor in reward-related brain regions in GOAT-KO mice. In summary, the ability of ghrelin to stimulate food motivation is dependent on intact GHSR signaling and modified by endogenous GOAT activity. Furthermore, GOAT activity is required for hedonic feeding behavior, an effect potentially mediated by forebrain orexin signaling. These data highlight the significance of the GOAT-ghrelin system for the mediation of food motivation and hedonic feeding. 漏 2012 Elsevier Inc.Fil: Davis, Fernando Javier. University of Cincinnati; Estados UnidosFil: Perello, Mario. Consejo Nacional de Investigaciones Cient铆ficas y T茅cnicas; Argentina. University of Texas Southwestern Medical Center; Estados UnidosFil: Choi, D. L.. University of Cincinnati; Estados UnidosFil: Magrisso, I. J.. University of Cincinnati; Estados UnidosFil: Kirchner, H.. University of Cincinnati; Estados UnidosFil: Pfluger, P. T.. University of Cincinnati; Estados UnidosFil: Tschoep, M.. University of Cincinnati; Estados UnidosFil: Zigman, J.M.. University of Texas Southwestern Medical Center; Estados UnidosFil: Benoit, S. C.. University of Cincinnati; Estados Unido
Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism
Ghrelin targets the hypothalamus to regulate food intake and adiposity. Endogenous ghrelin receptors [growth hormone secretagogue receptor (GHSR)] are also present in extrahypothalamic sites where they promote circuit activity associated with learning and memory, and reward seeking behavior. Here, we show that the substantia nigra pars compacta (SNpc), a brain region where dopamine (DA) cell degeneration leads to Parkinson's disease (PD), expresses GHSR. Ghrelin binds to SNpc cells, electrically activates SNpc DA neurons, increases tyrosine hydroxylase mRNA and increases DA concentration in the dorsal striatum. Exogenous ghrelin administration decreased SNpc DA cell loss and restricted striatal dopamine loss after 1-methyl-4-phenyl-1,2,5,6 tetrahydropyridine (MPTP) treatment. Genetic ablation of ghrelin or the ghrelin receptor (GHSR) increased SNpc DA cell loss and lowered striatal dopamine levels after MPTP treatment, an effect that was reversed by selective reactivation of GHSR in catecholaminergic neurons. Ghrelin-induced neuroprotection was dependent on the mitochondrial redox state via uncoupling protein 2 (UCP2)-dependent alterations in mitochondrial respiration, reactive oxygen species production, and biogenesis. Together, our data reveal that peripheral ghrelin plays an important role in the maintenance and protection of normal nigrostriatal dopamine function by activating UCP2-dependent mitochondrial mechanisms. These studies support ghrelin as a novel therapeutic strategy to combat neurodegeneration, loss of appetite and body weight associated with PD. Finally, we discuss the potential implications of these studies on the link between obesity and neurodegeneration. Copyrigh