33 research outputs found

    Diffuse large B-cell lymphoma: sub-classification by massive parallel quantitative RT-PCR.

    Get PDF
    Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity with remarkably variable clinical outcome. Gene expression profiling (GEP) classifies DLBCL into activated B-cell like (ABC), germinal center B-cell like (GCB), and Type-III subtypes, with ABC-DLBCL characterized by a poor prognosis and constitutive NF-κB activation. A major challenge for the application of this cell of origin (COO) classification in routine clinical practice is to establish a robust clinical assay amenable to routine formalin-fixed paraffin-embedded (FFPE) diagnostic biopsies. In this study, we investigated the possibility of COO-classification using FFPE tissue RNA samples by massive parallel quantitative reverse transcription PCR (qRT-PCR). We established a protocol for parallel qRT-PCR using FFPE RNA samples with the Fluidigm BioMark HD system, and quantified the expression of the COO classifier genes and the NF-κB targeted-genes that characterize ABC-DLBCL in 143 cases of DLBCL. We also trained and validated a series of basic machine-learning classifiers and their derived meta classifiers, and identified SimpleLogistic as the top classifier that gave excellent performance across various GEP data sets derived from fresh-frozen or FFPE tissues by different microarray platforms. Finally, we applied SimpleLogistic to our data set generated by qRT-PCR, and the ABC and GCB-DLBCL assigned showed the respective characteristics in their clinical outcome and NF-κB target gene expression. The methodology established in this study provides a robust approach for DLBCL sub-classification using routine FFPE diagnostic biopsies in a routine clinical setting.The research in Du lab was supported by research grants (LLR10006 & LLR13006) from Leukaemia & Lymphoma Research, U.K. XX was supported by a visiting fellowship from the China Scholarship Council, Ministry of Education, P.R. China.This is the accepted manuscript. The final version is available from NPG at http://www.nature.com/labinvest/journal/v95/n1/full/labinvest2014136a.html

    Expression of HLA Class I and HLA Class II by Tumor Cells in Chinese Classical Hodgkin Lymphoma Patients

    Get PDF
    BACKGROUND: In Caucasian populations, the tumor cells of Epstein Barr virus (EBV)-positive classical Hodgkin Lymphomas (cHL) patients more frequently express HLA class I and HLA class II molecules compared to EBV-negative cHL patients. HLA expression (in relation to EBV) in Asian cHL patients has not been previously investigated. METHODOLOGY/PRINCIPAL FINDINGS: We randomly selected 145 cHL patients with formalin-fixed, paraffin embedded tissue blocks available from 5 hospitals from the Northern part of China. Hematoxylin & Eosin-stained slides were used to re-classify the histological subtypes according to the WHO classification. EBV status was determined by visualization of EBERs in tumor cells using in situ hybridization. Membranous expression of HLA molecules was detected by immunohistochemistry using antibodies HC-10 (class I heavy chain) and anti-beta2-microglobulin for HLA class I, and CR3/43 for HLA class II. EBV+ tumor cells were observed in 40% (58/145) of the cHL patients. As expected, the percentage of EBV+ cases was much higher in the mixed cellularity subtype (71%) than in the nodular sclerosis subtype (16%) (p<0.001). Expression of HLA class I was observed in 79% of the EBV+ cHL cases and in 30% of the EBV-cases (p<0.001). For HLA class II, 52% of EBV+ cHL cases were positive, compared to 43% in EBV- cases (p = 0.28). CONCLUSIONS: The results in the Northern China population were similar to those in the Caucasian population for HLA class I, but not for HLA class II

    Multiple organ infection and the pathogenesis of SARS

    Get PDF
    After >8,000 infections and >700 deaths worldwide, the pathogenesis of the new infectious disease, severe acute respiratory syndrome (SARS), remains poorly understood. We investigated 18 autopsies of patients who had suspected SARS; 8 cases were confirmed as SARS. We evaluated white blood cells from 22 confirmed SARS patients at various stages of the disease. T lymphocyte counts in 65 confirmed and 35 misdiagnosed SARS cases also were analyzed retrospectively. SARS viral particles and genomic sequence were detected in a large number of circulating lymphocytes, monocytes, and lymphoid tissues, as well as in the epithelial cells of the respiratory tract, the mucosa of the intestine, the epithelium of the renal distal tubules, the neurons of the brain, and macrophages in different organs. SARS virus seemed to be capable of infecting multiple cell types in several organs; immune cells and pulmonary epithelium were identified as the main sites of injury. A comprehensive theory of pathogenesis is proposed for SARS with immune and lung damage as key features

    HLA-A*02:07 Is a Protective Allele for EBV Negative and a Susceptibility Allele for EBV Positive Classical Hodgkin Lymphoma in China

    Get PDF
    HLA-A2 protects from EBV+ classical Hodgkin lymphoma (cHL) in Western Europe, but it is unknown whether this protective effect also exists in the Chinese population. We investigated the association of HLA-A2 and specific common and well documented HLA-A2 subtypes with EBV stratified cHL patients (n = 161) from the northern part of China. Quantitative-PCR and sequence-based subtyping was performed to identify HLA-A2 positive samples and their subtypes. 67 (42%) of the cHL patients were EBV+. There were no significant differences in percentages of HLA-A2 positivity between cHL and controls (65% vs 66%) and between EBV+ and EBV− cHL patients (70% vs 61%). The frequency distribution of HLA-A2 subtypes was significantly different between EBV stratified cHL subgroups and controls. This difference was most striking for the HLA-A*02:07 type with a frequency of 38% in EBV+ cHL, 8% in EBV− cHL and 20% in controls. Significant differences were also observed for the HLA-A*02:07, HLA-A2 (non-02:07) and the A2-negative typings between EBV+ cHL vs controls (p = 0.028), EBV− cHL vs controls (p = 0.045) and EBV+ vs EBV− cHL cases (p = 2×10−5). In conclusion, HLA-A*02:07 is a predisposing allele for EBV+ cHL and a protective allele for EBV− cHL in the northern Chinese population

    Epidemiology of Classical Hodgkin Lymphoma and Its Association with Epstein Barr Virus in Northern China

    Get PDF
    BACKGROUND: The incidence of classical Hodgkin lymphoma (cHL) and its association with Epstein-Barr virus (EBV) varies significantly with age, sex, ethnicity and geographic location. This is the first report on epidemiological features of cHL patients from Northern regions of China. These features are compared to data from a previously published Dutch cHL population. METHODOLOGY/PRINCIPAL FINDINGS: 157 cHL patients diagnosed between 1997 and 2008 in the North of China were included after histopathological re-evaluation. The Dutch population-based cohort consisted of 515 cHL patients diagnosed between 1987 and 2000. EBV status was determined by in situ hybridization of EBV- encoded small RNAs. In the Chinese population, tumor cells of 39% of the cHL patients were EBV+ and this was significantly associated with male sex, mixed cellularity subtype and young age (<20 y). The median age of the Chinese patients was 9 years younger than that of the Dutch patients (28 y vs. 37 y). In addition, the age distribution between the two populations was strikingly different in both the EBV+ subgroups (p<0.001) and the EBV- subgroups (p = 0.01). The mixed cellularity subtype was almost 3x more frequent amongst the Chinese (p<0.001). CONCLUSION/SIGNIFICANCE: CHL patients from Northern regions of China show a distinctive age distribution pattern with a striking incidence peak of EBV+ mixed cellularity cases among children and adolescents and another high incidence peak of EBV- nodular sclerosis cases in young adults. In comparison to Dutch cHL patients there are pronounced differences in age distribution, subtype and EBV status, presumably caused by complex gene-environmental interactions

    Epigenetic silencing of the 3p22 tumor suppressor <it>DLEC1</it> by promoter CpG methylation in non-Hodgkin and Hodgkin lymphomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inactivaion of tumor suppressor genes (TSGs) by promoter CpG methylation frequently occurs in tumorigenesis, even in the early stages, contributing to the initiation and progression of human cancers. <it>Deleted in lung and esophageal cancer 1</it> (<it>DLEC1</it>), located at the 3p22-21.3 TSG cluster, has been identified frequently silenced by promoter CpG methylation in multiple carcinomas, however, no study has been performed for lymphomas yet.</p> <p>Methods</p> <p>We examined the expression of <it>DLEC1</it> by semi-quantitative reverse transcription (RT)-PCR, and evaluated the promoter methylation of <it>DLEC1</it> by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS) in common lymphoma cell lines and tumors.</p> <p>Results</p> <p>Here we report that <it>DLEC1</it> is readily expressed in normal lymphoid tissues including lymph nodes and PBMCs, but reduced or silenced in 70% (16/23) of non-Hodgkin and Hodgkin lymphoma cell lines, including 2/6 diffuse large B-cell (DLBCL), 1/2 peripheral T cell lymphomas, 5/5 Burkitt, 6/7 Hodgkin and 2/3 nasal killer (NK)/T-cell lymphoma cell lines. Promoter CpG methylation was frequently detected in 80% (20/25) of lymphoma cell lines and correlated with <it>DLEC1</it> downregulation/silencing. Pharmacologic demethylation reversed <it>DLEC1</it> expression in lymphoma cell lines along with concomitant promoter demethylation. <it>DLEC1</it> methylation was also frequently detected in 32 out of 58 (55%) different types of lymphoma tissues, but not in normal lymph nodes. Furthermore, <it>DLEC1</it> was specifically methylated in the sera of 3/13 (23%) Hodgkin lymphoma patients.</p> <p>Conclusions</p> <p>Thus, methylation-mediated silencing of <it>DLEC1</it> plays an important role in multiple lymphomagenesis, and may serve as a non-invasive tumor marker for lymphoma diagnosis.</p
    corecore