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ABSTRACT   

 

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity with remarkably variable clinical 

outcome.  Gene expression profiling (GEP) classifies DLBCL into activated B-cell like (ABC), germinal 

centre B-cell like (GCB) and Type-III subtypes, with ABC-DLBCL characterised by a poor prognosis 

and constitutive NF-κB activation.  A major challenge for the application of this cell of origin (COO) 

classification in routine clinical practice is to establish a robust clinical assay amenable to routine 

FFPE (formalin-fixed paraffin- embedded) diagnostic biopsies.  In this study, we investigated the 

possibility of COO-classification using FFPE RNA samples by massive parallel quantitative reverse 

transcription PCR (qRT-PCR).   We established a protocol for parallel qRT-PCR using FFPE RNA 

samples with the Fluidigm BioMarkTM HD system, and quantified the expression of the COO 

classifier genes and the NF-κB targeted genes that characterise ABC-DLBCL in 143 cases of DLBCL.  

We also trained and validated a series of basic machine learning classifiers and their derived meta 

classifiers, and identified SimpleLogistic as the top classifier that gave excellent performance across 

various GEP  datasets derived from FF or FFPE tissues by different microarray platforms.  Finally, we 

applied SimpleLogistic to our dataset generated by qRT-PCR, and the ABC and GCB-DLBCL assigned 

showed the respective characteristics in their clinical outcome and NF-κB target gene expression.  

The methodology established in this study provides a robust approach for DLBCL sub-classification 

using routine FFPE diagnostic biopsies in a routine clinical setting.      



3 

 

INTRODUCTION   

 

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous entity with remarkably variable clinical 

outcome.  Among the many biomarkers investigated so far, only the molecular subtypes by cell of  

origin (COO) classification, the MYC involved chromosome translocation and TP53 mutation have 

been consistently shown to bear prognostic value in the setting of  rituximab containing 

chemotherapy regimens.  The COO-classification by whole genome expression profiling (GEP) 

classifies DLBCL into activated B-cell like (ABC), germinal centre B-cell like (GCB) and Type-III 

(unclassified) subtypes, with the ABC-DLBCL characterised by a poor prognosis and constitutive NF-

κB activation.1-5    The original classification was based on similarity of DLBCL gene expression to the 

activated peripheral blood B-cells or normal germinal centre B-cells by hierarchical clustering 

analysis.1  Subsequently, Wright and colleagues identified 27 genes that were most discriminative in 

their expression between ABC and GCB-DLBCL, and developed a linear predictor score (LPS) 

algorithm for COO-classification.3  These seminal works are entirely based on retrospective 

investigations of fresh-frozen (FF) lymphoma tissues.  A major challenge for the application of this 

COO-classification in clinical practice is to establish a robust clinical assay amenable to routine FFPE 

(formalin fixed paraffin embedded) diagnostic biopsies.   

 

Several immunohistochemistry based algorithms have been investigated to recapitulate the COO-

classification by GEP, but all suffer from reproducibility, particularly low efficacy in survival 

separation between the ABC and GCB subtypes.6-9  Several studies have investigated the possibility 

of  COO-classification of DLBCL using FFPE tissues by quantitative measurement of mRNA 

expression, including quantitative nuclease protection assay,10 gene expression profiling (GEP) with 

the Affymetrix HG U133 Plus 2.0 platform or the Illumina whole genome DASL assay,11-13 and 
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NanoString technology.14 In general, these studies demonstrated high confidence of COO-

classification of DLBCL using FFPE tissues and a robust separation in overall survival between ABC 

and GCB-DLBCL.  

 

Apart from the above technologies for GEP, the expression of a small number of genes can be 

quantified by high throughput real-time PCR.  In comparison with the microarray based approach, 

high throughput real-time PCR is likely more sensitive and accurate in data acquisition, and the data 

analysis is expected to be much easier and robust.  Real-time PCR has been successfully used for 

construction of the 6-gene prediction model in DLBCL,15 but this model, unlike COO classification, 

does not depict the underlying molecular mechanism and its utility in the context of new 

therapeutic trials remains unknown.  In this study, we have developed and validated a protocol for 

COO-classification of DLBCL using FFPE tissues by high throughput real time PCR with the Fluidigm 

BioMarkTM HD system together with a newly validated classifier.    

 

MATERIALS AND METHODS 

 

Patient materials and datasets 

A total of 152 cases of DLBCL were experimentally investigated in the present study, and all were 

previously studied for COO classification by Illumina WG-DASL array using FFPE lymphoma 

tissues.13,16  In each case, mRNA sample from FFPE lymphoma tissue was available from the 

previous study. Local ethical guidelines were followed for the use of archival tissues for research 

with the approval of the ethics committees of the involved institutions. 
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The following GEP datasets, which had companion clinical follow up data, were retrieved and used 

for construction and validation of DLBCL classifier: the FF dataset by Lymphochip 

(http://llmpp.nih.gov/DLBCLpredictor/),3 the FF dataset (GSE10846: this was further split according 

to treatment with CHOP or R-CHOP and analysed independently) by Affymetrix U133 plus 2.0,17 the 

Monti FF dataset by Affymetrix U133A&B (http://www.ncbi.nlm.nih.gov/gds/),18  and the FFPE 

dataset (GEO: GSE32918) by Illumina WG-DASL array (Haematological Malignancy Diagnostic 

Service, St James Institute of Oncology, Leeds).13,16    

 

Primer design and validation 

PCR primer pairs were designed for the 20 classifier genes that are commonly present in different 

microarray platforms, 5 NF-κB target genes that are  characteristically enriched in their expression 

in ABC-DLBCL,4,5 and 3 reference genes (Table S1).   The reference genes were selected as they are 

stably expressed in lymphoid tissues, but not affected by genomic copy number changes in 

lymphoma, nor involved in lymphomagenesis.  A set of criteria were followed for the primer design 

and these included: a) targeting a small fragment of the coding sequence with all amplicons in the 

range of 70-130bp, thus being amenable to FFPE tissues; b) where possible flanking an intron, 

hence preventing from amplification of any potentially contaminated  genomic DNA;  c) targeting as 

many known transcript variants as possible; d) giving a Tm value at or close to 60°C 

(http://www.oligoevaluator.com); e) avoiding any known SNPs and GC rich sequence region.  The 

specificity of the primers designed and their potential formation of primer dimmers were checked 

with Primer Blast (www.ncbi.nlm.nih.gov/tools/primer-blast/ ) and Oligos 9.1, then further assessed 

by In-Silico PCR package (http://genome.ucsc.edu/cgi-bin/hgPcr?command=start) before purchase 

from Thermo Fisher Scientific GmbH.   

 

http://llmpp.nih.gov/DLBCLpredictor/�
http://www.ncbi.nlm.nih.gov/gds/�
http://www.oligoevaluator.com/Login.jsp�
http://genome.ucsc.edu/cgi-bin/hgPcr?command=start�
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The PCR primer pairs were experimentally validated for qRT-PCR with RNA samples extracted from 

FFPE tonsil and lymphoma tissue specimens using the iCycler iQ system (BioRad).  The primers 

failed to give specific results or high efficiency of amplification, or worked inconsistently were 

rejected, and new primers were designed, until satisfactory primer sets obtained for each of the 

genes investigated.     

 

RNA extraction, cDNA synthesis and quantitative PCR  

RNA was purified from FFPE tissues using the RecoverAll Total Nucleic Acid isolation Kit (Life 

Technologies), followed by TURBOTMDNase (Life Technologies) treatment to remove genomic DNA.  

A total of 200ng RNA was subjected for cDNA synthesis in a 10µl reaction mixture with random 

hexamers using the Superscript III Kit (Invitrogen, Life Technologies) according to the 

manufacturer’s instructions.  An aliquot (2µl)  of the cDNA was pre-amplified in a 10µl reaction 

using TaqMan PreAmp mastermix (Life Technologies) with all the 28 pairs of gene specific primers, 

and the PCR cycle conditions were 95°C for 10 min, followed by 19 cycles of 95°C (15 sec) and 60°C 

(4 min).  This protocol was shown to yield unbiased amplification (Figure S1).  The pre-amplified 

products were treated with exoSAP-IT (Affymetrix), diluted 5 folds using DNA suspension buffer 

(TEKnova) and stored at -80°C until use for quantitative real time PCR.    

 

For quantitative PCR with iCycler iQ system (BioRad), this was carried out using 2.7µl of the diluted 

pre-amplified product and SSO Evagreen supermix with low ROX (BioRad) according to the 

manufacturer’s instructions.  All reactions were performed in triplicate.  Controls included RNA 

sample to check for genomic DNA contamination and no template cDNA to monitor any across 

contamination.  PCR cycle conditions were 95°C for 1 minute, followed by 30 cycles of 96°C (5 sec) 

and 60°C (20 sec).  Melting curve analysis was routinely preformed to confirm specific amplification.  
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The expression level of each gene was calculated by the ∆CT method.   The amplification efficiency 

of each primer pair was obtained by quantitative PCR of a serial dilutions of the specific sequence 

products respectively.    The primer pairs validated satisfactorily by experiments with a high 

amplification efficiency were proceeded to quantitative PCR with the Fluidigm BioMarkTM HD 

system (Fluidigm Corporation, CA, USA).  

  

Massive parallel quantitative PCR with Fluidigm BioMarkTM HD system 

This was carried out essentially according to the manufacturer's instructions (Figure 1).  Briefly, a 

sample mixture was prepared by mixing 2.7µl of the diluted pre-amplified product, 3µl SSO 

Evagreen supermix with low ROX (BioRad) and 0.3µl 20 × Sample loading reagent. Each sample was 

investigated in duplicate.  Separately, an assay mixture was prepared for each primer pair and this 

included 3µl of 10µM forward and reverse primer and 3µl 2× Assay loading reagent.  The dynamic 

array was first primed with control line fluid, and then loaded with the sample and assay mixtures 

via the appropriate inlets using an IFC controller.  The array chip was placed in the BioMark 

Instrument for PCR at 95°C for 10 min, followed by 30 cycles at 95°C for 15 sec and 60°C for 1 min 

according to the protocol GE Fast 48x48 PCR + Melt v2.pcl.  The data was analyzed with Real-Time 

PCR Analysis Software in the BioMarkTM HD instrument (Fluidigm Corporation, CA, USA).   

 

Normalisation and analysis of Fluidigm qRT-PCR data  

This was carried out using the R statistic software and Bioconductor HT-qPCR package.  For each 

sample, the Ct values of the two replicates were averaged and then normalised for each primer pair 

according to their amplification efficiency.  The expression level of each gene was calculated by the 

∆CT method using the mean from the three reference genes.   Based on the application efficiency in 

our experimental system, any qPCR reaction with a ∆Ct value above the cutoff (25) for linear 
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amplification was set to 26.19    For a small proportion of PCR reactions, there was no evidence of 

amplification at the maximum 30 cycle set by the manufacturer's default protocol, commonly due 

to low levels of gene expression (for example GCB genes in ABC-DLBCL or vice versa ) or rarely as a 

result of failed amplification.  Any cases with more than 15% of targets, i.e. 4/28 genes, showing a 

negative result were considered unreliable and excluded from data analysis.        

 

Data preparation for DLBCL classifier validation  

For each of the GEP datasets by the Affymetrix platform, the probe annotation was updated 

according to Release 33 (30/10/2012), while for GEP dataset by Illumina WG-DASL assay, the 

specificity of the classifier gene probes was further checked by search of the NCBI human database. 

The probe that was found to be non-specific was excluded from the analysis. The median value 

across the probes for each gene was selected and used for DLBCL classification since it was shown 

to be more informative in a recent study.13  The median value for each classifier gene in a given 

dataset was transformed into a quantile score appose to Z-score as the expression value of a high 

proportion of the classifier genes in all the datasets tested was not in a normal distribution (Table 

S2).  The quantile transformed values were converted to ARFF files for training and testing with the 

machine learning classifiers in Weka 3.7.7 (http://www.cs.waikato.ac.nz/ml/weka/).   

 

DLBCL classifier testing and ranking  

The LLMPP lymphochip dataset by Wright et al was used for training and selecting the top basic 

machine learning classifiers using the Weka 3.7.7 package (http://www.cs.waikato.ac.nz/ml/weka/).   

A total of 26 representative basic machine learning classifiers were trained and cross-validated on 

the Wright dataset using the default settings (Figure 1).  As with the original study, the training and 

validation were performed in the identical series of 160 and 80 cases respectively.2,3 The trained 

http://www.cs.waikato.ac.nz/ml/weka/�
http://www.cs.waikato.ac.nz/ml/weka/�


9 

 

Weka classifiers gave prediction for each of the three classes (i.e. ABC, GCB, Type-III), the class with 

the highest probability was taken as the predicted class.  The performance of these basic classifiers 

was ranked according to F-Measure and ROC area value as described previously.13  The resulting 

top basic machine learning classifiers were systematically combined, trained and cross-validated on 

the Wright dataset and the resulting best classifier was then tested on the Affymetrix GSE10846 

dataset from FF tissues,17 the Illumina WG-DASL GSE32918 dataset from FFPE tissues,13,16 and the 

Affymetrix dataset from FF tissues by Monti et al (http://www.ncbi.nlm.nih.gov/gds/).18  Finally, the 

validated best classifier was applied to the qRT-PCR data generated on the FFPE tissues in the 

present study. 

 

Comparison of NF-κB target gene expression between ABC and GCB-DLBCL   

The expression of NF-κB target genes, BCL2, CCDN2, CCR7, CD44, cFLIP, IκBα and IRF4, was 

compared between the assigned ABC and GCB subgroups using non-parametric Mann-Whitney U 

test.       

 

RESULTS  

 

Identification of the best classifier amenable to datasets from both FF and FFPE tissues    

The DLBCL automatic classifier (DAC) was developed for COO classification by Illumina WG-DASL  

profiling using FFPE tissues.13  The meta-classifier DAC utilised a balanced voting between the 

individual classifiers LMT, J48, RF100 and SMO, and was shown highly confidence in classification of 

GEP data from both FF and FFPE tissues.13  In the initial analysis, we applied DAC to our qRT-PCR 

data, but found classification unsatisfactory in comparison with those obtained by WG-DASL.13   

 

http://www.ncbi.nlm.nih.gov/gds/�
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While exploring the data analysis,  we found that the expression value of a high proportion of 

classifier genes in the published datasets was not in a normal distribution (Table S2), thus not 

suitable for Z-score transformation. In addition, we found that the models generated by logistic 

based classifiers, such as Logistic, SimpleLogistic, LMT and FT, were not always compatible with the 

expected function of individual classifier genes in ABC and GCB assignment. Depending on 

individual classifiers, a proportion of the ABC classifier genes were given a coefficient favouring GCB 

rather ABC class assignment or vice versa (Table S3).  This is most likely caused by multicollinearity 

due to high correlation of expression of the classifier genes.    

  

To circumvent the above issues, we first used quantile score for data transformation, which is 

amenable to quantitative data regardless their distribution.  To overcome multicollinearity, we 

converted the expression of 20 individual classifier genes into two variable indices, by summing the 

quantile score of all ABC or GCB genes in each case respectively. Based on the characterised 

expression pattern of the classifier genes, one would expect that ABC-DLBCL is featured by high 

ABC but low GCB index, GCB-DLBCL by high GCB but low ABC index, and Type-III DLBCL by both low 

ABC and GCB indices.       

 

Based on the above principle, we systematically trained and validated a series of basic and meta 

machine learning classifiers and identified the classifier that gave the best performance across 

different microarray platforms and datasets. Of the 27 classifier genes defined by Wright et al,3 only 

20 were commonly present among the Lymphochip, Affymetrix and Illumina WG-DASL platforms.  A 

previous study showed that the FFPE dataset was best classified using the 20 classifier genes with 

the LLMPP lymphochip dataset by Wright et al for training.13  Accordingly, we calculated the ABC 

and GCB indices based on the same 20 classifier genes and used the Wright dataset for initial 
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classifier training (n=160 cases) and validation (n=80 cases).  We first tested a total of 26 

representative basic machine learning classifiers and ranked them according to F-Measure and ROC 

area value.13  There were 7 basic classifiers showing F-Measure and ROC area value above 0.80 and 

0.90 respectively, and 6 of these classifiers, namely NaiveBayes, Logistic, FT,  MultilayerPerceptron, 

RBFnetwork, SimpleLogistic, yielded Type-III class at a relatively low frequency.  These 6 classifiers 

were systematically combined and trained, and validated on the Wright dataset.   

 

All the meta classifiers except one showed F-Measure and ROC area values similar to the top  6 

basic classifiers (Table-S5).  The performance of the 6 basic and 16 of their derived meta classifiers 

were ranked according to survival separation between the assigned ABC and GCB subtypes and the 

least number of cases assigned to Type-III.  This identified SimpleLogistic as the best choice, and we 

then further tested this classifier on the Affymetrix GSE10846 dataset based on FF tissues (including 

two cohorts: one treated with CHOP and the other treated with R-CHOP),17 and the Illumina WG-

DASL GSE32918 dataset based on FFPE tissues.13,16  SimpleLogistic consistently gave excellent 

performance for all three datasets, overall better than the original class assignment as measured by 

overall survival separation between the ABC and GCB groups, and the least number of cases 

assigned to Type-III (Figure 2, Table S6).    

 

We further tested SimpleLogistic on the dataset by Monti et al.18    The Monti dataset lacked 4 of 

the 20 classifier genes including absence of GCET1.  Based on the 16 classifier genes, SimpleLogistic 

also showed a comparable ABC/GCB/Type-III assignment and survival separation between the ABC 

and GCB class (Table S6), confirming robustness of the classifier.  
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Finally, to further testify the ABC/GCB class assigned by SimpleLogistic, we compared the NF-κB 

target gene expression between the two classes by SimpleLogistic and the original classifier.  For 

each of the three datasets investigated, SimpleLogistic and the original classifier showed nearly 

identical results on the NF-κB target gene expression between the ABC and GCB groups assigned, 

with the expression of IRF4, CCND2, CD44, cFLIP, BCL2 and CCR7 being significantly higher in ABC 

than GCB-DLBCL, but no difference in the NFKB1A expression between the two groups (Figure 2).  

These results are very similar to the NF-κB target gene signature in DLBCL ABC/GCB subtypes, which 

was defined in the original studies.4,5 

 

DLBCL COO classification by qRT-PCR with Fluidigm Dynamic Array 

In total, 143 of the 152 cases included were successfully investigated by qRT-PCR with the Fluidigm 

BioMarkTM HD system, with the remaining 9 cases failed due to insufficient quantity of RNA or 

incomplete data acquisition. We applied the SimpleLogistic classifier to this qRT-PCR dataset as 

described above.   The distribution of ABC (28.7%), GCB (53.1%) and Type-III subtype assigned by 

the qRT-PCR/SimpleLogistic classifier was nearly identical to those by Illumina WG-DASL/DAC 

classifier.   

 

Of the 143 cases successfully investigated by qRT-PCR, 120 were treated with R-CHOP and were 

further analysed for correlation between treatment outcome and COO subtype.    As shown in 

Figure 3B, there was a significant difference in the overall survival between the ABC and GCB-DLBCL 

assigned by the qRT-PCR/SimpleLogistic classifier.  As expected, the expression of NF-κB target 

genes IRF4, CCND2, CD44, cFLIP and CCR7, with the exception of BCL2,  was significantly higher in 

ABC than GCB-DLBCL (Figure 3).  
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 DISCUSSION  

 

COO-classification of DLBCL has two significant clinical implications.  First, the classification divides 

DLBCL into different prognostic subgroups with ABC-DLBCL showing worse survival than GCB-DLBCL 

in both CHOP and R-CHOP treatment settings; Second, ABC-DLBCL is characterised by constitutive 

NF-κB activation, and may be treated by inhibitors of the NF-κB pathway.  For example, addition of 

bortezomib to chemotherapy significantly improved the treatment response and overall survival of 

the patients with ABC-DLBCL, but not those with GCB-DLBCL.20   Currently, a prospective phase-III 

randomised controlled clinical trial, known as REMoDL-B, is being conducted to assess the clinical 

efficacy between R-CHOP and bortezomib plus R-CHOP according to ABC and GCB molecular 

subtype.  Therefore, the survival separation between the ABC and GCB subtype and their difference 

in NF-κB activities are the key parameters in assessment of methodologies for COO-classification of 

DLBCL. There are many factors affecting the performance of COO-classification and the critical 

elements include the nature of lymphoma specimen, experimental methods for data collection, 

data normalisation and transformation, classifier and the level of probability used for subtype 

assignment.  

 

Immunohistochemical study of the surrogate protein markers and several algorithms have been 

extensively investigated to recapitulate the COO-classification by GEP, but all suffered from 

reproducibility and low efficacy in survival separation between the ABC and GCB-DLBCL.8,9 GEP 

using RNA samples from FF tissues has been shown highly consistent in COO-classification, and this 

approach has also been applied to FFPE tissues with very encouraging results. Nonetheless, the 

drawback of the GEP approach is cumbersome in experimental setup and data analyses, and 

additionally not cost effective.  For clinical application, a quantitative measurement of the 
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expression of the classifier genes, rather than the whole genome, would be preferable.  In a recent 

study, Care et al showed that a panel of 20 of the 27 classifier genes defined by Wright et al gave 

the best performance for COO-classification after testing a series of classifier genes.3,13   

 

To develop a tailor-made clinical assay for COO-classification of DLBCL, we established a robust 

protocol to measure the expression of the 20 classifier genes together with the NF-κB target genes 

characteristically over-expressed in ABC-DLBCL, using RNA samples from FFPE tissues by parallel 

qRT-PCR with the Fluidigm BioMarkTM HD system.   We demonstrated that the expression of 

classifier genes could be reproducibly measured using the protocol established.  In comparison with 

the microarray based GEP, the qRT-PCR based approach offers several notable advantages including 

high sensitivity and reproducibility, easy to perform and cheap to run, and a short turnaround time.  

 

Apart from high quality of data acquisition, generation of an accurate classifier is another challenge 

for application of COO-classification to qRT-PCR dataset from FFPE tissue as which classifier to use 

appears to depend on the method/platform of data acquisition and the nature (FF or FFPE) of the 

tissue specimen used.  For example, the LPS algorithms successfully used on the LLMPP FF dataset 

by Lymphochip was not suitable for the FFPE dataset by Illumina WG-DASL.13  Similarly, we found 

that the meta classifier DAC developed based on the FFPE dataset by Illumina WG-DASL was not 

amenable to our qRT-PCR dataset.  The potential reasons accounting for these incompatibilities are 

many and the critical ones may include variations in data distribution, normalisation and 

transformation, as well as classifier selection and validation.   

 

There are many machine learning classifiers and a proportion of them are based on logistic model, 

which is potentially suitable for assessing the relationship between categorical variables (DLBCL 
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subtypes) and their dependent variables (expression of classifier genes).  However, their utility in 

COO-classification of DLBCL is restricted by the presence of multicollinearity among the expression 

of the classifier genes (Table S3).  To overcome this, we combined all the ABC and GCB gene 

expression values into two indices respectively, thus making the data amenable to a wide range of 

machine learning classifiers. 

 

To develop a classifier that is amenable to the qRT-PCR based dataset, we have systematically 

trained and validated 26 basic machine learning classifiers and their derived meta classifiers using 

the LLMPP lymphochip dataset by Wright et al.2,3  As with the study by Care et al,13 the selection of 

top classifier was based on the significance of survival separation between the ABC and GCB groups, 

and the least number of cases assigned to Type-III.  This combined assessment avoided selection 

bias toward classifiers that gave significant survival separation between the ABC and GCB groups, 

but at the expense of the numbers of cases successfully assigned to these biological subtypes.    The 

top classifier identified was then tested with additional GEP datasets from both FF (by Affymetrix 

platform) and FFPE lymphoma specimens (Illumina WG-DASL).  Analyses of survival separation and 

NF-κB target gene expression between the ABC and GCB groups assigned, and the distribution of 

the three molecular subtypes consistently showed that SimpleLogistic, the top classifier identified, 

gave a similar or better performance than the respective original classifier. Finally, the assured top 

classifier was applied to our qRT-PCR dataset.  As the final classifier used for our qRT-PCT dataset 

was sequentially validated using a series of published datasets derived from both FF and FFPE 

specimens by different microarray platforms, the above process of classifier generation has little 

risk of overfitting, a common issue in classifier generation.                
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Despite that SimpleLogistic and original classifier yielded similar performance including survival 

separation and differential NF-κB target gene expression between the ABC and GCB subtypes in a 

range of datasets, the concordant rate in class assignment between these different classifiers was 

at 80% across all datasets investigated.  These findings are very similar to those found in previous 

studies irrespective of the nature (fresh frozen or FFPE) of DLBCL specimens investigated.10,13,14,21  

In general, the samples showing discrepant classes by different classifiers had a low confidence 

score for either ABC or GCB class assignment.13  It is possible that these cases are in a "molecular 

grey zone", and their class cannot be accurately defined no matter which classifiers used.  In 

support of this speculation, there is emerging evidence showing overlap in somatic mutation 

profiles between ABC and GCB DLBCL.22,23  Nonetheless, it remains to be investigated whether the 

cases not amenable for an accurate COO classification represent an intermediate subset with 

overlapping genetic changes.          

 

In summary, we have developed a robust protocol for COO-classification of DLBCL using RNA 

samples from FFPE tissues by qRT-PCR using the Fluidigm BioMarkTM HD system with SimpleLogistic 

classifier. The ABC and GCB-DLBCL assigned show the respective characteristics in their clinical 

outcome and NF-κB target gene expression.  The methodology may provide a robust approach for 

DLBCL sub-classification using routine FFPE diagnostic biopsies in a routine clinical setting.      
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FIGURE LEGENDS:  

 

Figure 1.   Outline of classifier training, validation and testing, and application of the best classifier 

to qRT-PCR data. The LLMPP lymphochip dataset by Wright et al was used for training and selecting 

the top basic machine learning classifiers using the Weka 3.7.7 package 

(http://www.cs.waikato.ac.nz/ml/weka/).   A total of 26 representative basic machine learning 

classifiers were trained and cross-validated on the Wright dataset using the default settings.  The 

trained Weka classifiers gave prediction for each of the three classes (i.e. ABC, GCB, Type-III), the 

http://www.cs.waikato.ac.nz/ml/weka/�
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class with the highest probability was taken as the predicted class.  The performance of these basic 

classifiers was ranked according to F-Measure and ROC area value.  The resulting 6 top basic 

machine learning classifiers were systematically combined, trained and cross-validated on the 

Wright dataset.  All the meta classifiers except one yielded F-Measure and ROC area values similar 

to the top  6 basic classifiers.  The performance of these meta classifiers together with the 6 top 

basic classifiers were ranked according to survival separation between the assigned ABC and GCB 

cases and the least number of cases assigned to Type 3.   The resulting best classifier, SimpleLogistic, 

was then tested on the Affymetrix GSE10846 dataset from FF tissues,17 the Illumina WG-DASL 

GSE32918 dataset from FFPE tissues,13,16 and the Affymetrix dataset from FF tissues by Monti et al 

(http://www.ncbi.nlm.nih.gov/gds/).18  Finally, the validated best classifier was applied to the qRT-

PCR data generated on the FFPE tissues in the present study. 

 

Figure 2.   Testing of SimpleLogistic classifier for COO classification of DLBCL using published 

datasets.  The probability of ABC/GCB/Type-III assignment is shown on the top of heatmap 

illustration in each dataset. Sum_ABC: the summed ABC gene score; Sum_GCB: the summed GCB 

gene score.  The middle panel shows comparison of overall survival among the ABC, GCB and Type-

III groups.  The  table on the right displays the significant difference in the expression of the NF-κB 

target genes between ABC and GCB-DLBCL assigned. *Benjamini and Hochberg method was used to 

correct multiple testing problems.    

 

Figure 3.   COO classification of DLBCL using RNA samples from FFPE tissues by parallel qRT-PCR and 

SimpleLogistic classifier.  A)  Heatmap shows the level of expression of the 20 classifier genes used 

for classification; B)  Difference in overall survival between ABC, GCB and Type3 DLBCL in 120 cases 

http://www.ncbi.nlm.nih.gov/gds/�
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of DLBCL treated with R-CHOP; C)  Difference in NF-κB target gene expression between ABC and 

GCB-DLBCL. *Benjamini and Hochberg method was used to correct multiple testing problems. 

 

 

Supplementary Figure S1:  Confirmation of uniformity of pre-amplification for target enrichment 

prior to qPCR with the Fluidigm BioMarkTM HD system.  To increase the sensitivity for qRT-PCR using 

FFPE tissues, a pre-amplification of cDNA sample with gene specific primers was performed before 

qPCR with the Fluidigm BioMarkTM HD system.   To confirm the pre-amplification step did not 

introduce any bias, we designed the experiment outlined in panel A and compared the qPCR 

measurements among the three protocols on three representative samples.  As shown in panel B, 

△△Ct_1: BioRad(original) –FluidigmBioMark(with_preamp), △△Ct_2: BioRad (with_preamp) – 

FluidigmBioMark(with preamp), and △△Ct_3: BioRad(original) – FluidigmBioMark(with preamp) 

for each of the genes investigated were within the range  of 1.5 and -1.5 , with the majority being 

close to 0.  There is a strong correlation among the data from the three protocols.  Taken together, 

the data indicate that  no biased amplification was introduced by this pre-amplification step.    

 

Preamp: pre-amplification. 
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of 26 representative basic machine learning classifiers were trained and cross-validated on the Wright 
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(i.e. ABC, GCB, Type-III), the class with the highest probability was taken as the predicted class.  The 
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validated best classifier was applied to the qRT-PCR data generated on the FFPE tissues in the present study. 
 
  

FFPE DLBCL 
(n=152)  

Bench experiments 

Microdissection  
& RNA extraction 

cDNA synthesis 

Parallel qPCR with 
Fluidigm Dynamic Array 

Classifier validation & testing   

Data preparation:   
-   Standard normalisation  
- Selection of the median value across the probes for each  of 

the 20 classifier genes  
-   Quantile score data transformation 
-   Sum the quantile score of all ABC and GCB genes separately 

Training & validation of 26 basic machine learning classifiers 
using the FF Lymphochip dataset by Wright et al   

Top 6 basic classifiers were systemically combined and 
validated using the FF Lymphochip dataset by Wright et al  

The best identified classifier was tested on additional 
datasets:  (FF Affymetrix GSE10846, FFPE Illumina WG-DASL 
GSE32918, & Monti Affymetrix dataset)   

Application  to qRT-PCR dataset by Fluidigm Dynamic Array 

pre-amplification 

Data  normalisation 
Quantile score transformation    



NF-kB 
 target gene 

Original classifier SimpleLogistic 

IRF4 1.04E-13 1.57E-12 

CCND2 1.28E-10 1.24E-13 

CD44 2.44E-10 8.65E-10 

cFLIP 1.16E-07 1.16E-09 

NFKBIA 8.20E-01 9.17E-01 

BCL2 1.55E-09 8.04E-10 

CCR7 1.08E-07 5.59E-09 

NF-kB  
target gene 

Original classifier SimpleLogistic 

IRF4 1.42E-14 4.00E-13 

CCND2 2.32E-10 4.76E-13 

CD44 4.21E-11 6.82E-10 

cFLIP 1.87E-14 3.84E-10 

NFKBIA 4.54E-01 8.40E-01 

BCL2 1.16E-08 1.16E-07 

CCR7 7.88E-11 7.90E-10 

NF-kB  
target gene 

Original classifier SimpleLogistic 

IRF4 3.76E-11 7.24E-11 

CCND2 1.19E-07 9.36E-10 

CD44 5.36E-04 6.92E-03 

cFLIP 1.30E-03 8.69E-04 

NFKBIA n/a n/a 

BCL2 4.20E-04 1.04E-07 

CCR7 2.15E-03 1.24E-04 

  

 

ABC
GCB
TypeIII

 

  

GSE10846: DLBCL_CHOP_FF_Affymetrix 

GSE10846: DLBCL_R-CHOP_FF_Affymetrix 

GSE32918: DLBCL_FFPE_Illumina_WG-DASL 

Figure 2.   Testing of SimpleLogistic classifier for COO classification of DLBCL using published datasets. The probability of ABC/GCB/Type-III 
assignment is shown on the top of heatmap illustration in each dataset. Sum_ABC: the summed ABC gene score; Sum_GCB: the summed 
GCB gene score.  The middle panel shows comparison of overall survival among the ABC, GCB and Type-III groups.  The  table on the right 
displays the significant difference in the expression of the NF-κB target genes between ABC and GCB-DLBCL assigned. *Benjamini and 
Hochberg method was used to correct multiple testing problems.  
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Figure 3. COO classification of DLBCL using RNA samples from FFPE tissues by parallel qRT-PCR and SimpleLogistic 
classifier.  A)  Heatmap shows the level of expression of the 20 classifier genes used for classification; B)  Difference 
in overall survival between ABC, GCB and Type3 DLBCL in 120 cases of DLBCL treated with R-CHOP; C)  Difference in 
NF-κB target gene expression between ABC and GCB-DLBCL. *Benjamini and Hochberg method was used to correct 
multiple testing problems. 
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Supplementary Figure S1:  Confirmation of uniformity of pre-amplification for target enrichment prior to qPCR with the Fluidigm 
BioMarkTM HD system.  To increase the sensitivity for qRT-PCR using FFPE tissues, a pre-amplification of cDNA sample with 
gene specific primers was performed before qPCR with the Fluidigm BioMarkTM HD system.   To confirm the pre-amplification 
step did not introduce any bias, we designed the experiment outlined in panel A and compared the qPCR measurements 
among the three protocols on three representative samples.  As shown in panel B, △△Ct_1: BioRad(original) –
FluidigmBioMark(with_preamp), △ △ Ct_2: BioRad (with_preamp) – FluidigmBioMark(with preamp), and △ △ Ct_3: 
BioRad(original) – FluidigmBioMark(with preamp) for each of the genes investigated were within the range  of 1.5 and -1.5 , 
with the majority being close to 0.  There is a strong correlation among the data from the three protocols.  Taken together, the 
data indicate that  no biased amplification was introduced by this pre-amplification step.  
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△△CT_1: Icycler(original) - BioMark(preamp) 
△△CT_2: Icycler(preamp) - BioMark(preamp) 

Testing uniformity of pre-amplification
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