20 research outputs found

    Bedeutung von Kationenkanälen für die Regulation und die Homöostase des Immunsystems

    Get PDF

    Bedeutung von Kationenkanälen für die Regulation und die Homöostase des Immunsystems

    Get PDF

    The Channel-Kinase TRPM7 as Novel Regulator of Immune System Homeostasis

    Get PDF
    The enzyme-coupled transient receptor potential channel subfamily M member 7, TRPM7, has been associated with immunity and immune cell signalling. Here, we review the role of this remarkable signalling protein in lymphocyte proliferation, differentiation, activation and survival. We also discuss its role in mast cell, neutrophil and macrophage function and highlight the potential of TRPM7 to regulate immune system homeostasis. Further, we shed light on how the cellular signalling cascades involving TRPM7 channel and/or kinase activity culminate in pathologies as diverse as allergic hypersensitivity, arterial thrombosis and graft versus host disease (G(V)HD), stressing the need for TRPM7 specific pharmacological modulators

    TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg2+ and Mg center dot ATP

    Get PDF
    TRPM6 and its homologue TRPM7 are alpha-kinase-coupled divalent cation-selective channels activated upon reduction of cytosolic levels of Mg2+ and Mg center dot ATP. TRPM6 is vital for organismal Mg2+ balance. However, mechanistically the cellular role and functional nonredundancy of TRPM6 remain incompletely understood. Comparative analysis of native currents in primary cells from TRPM6-versus TRPM7-deficient mice supported the concept that native TRPM6 primarily functions as a constituent of heteromeric TRPM6/7 channels. However, heterologous expression of the human TRPM6 protein engendered controversial results with respect to channel characteristics including its regulation by Mg2+ and Mg center dot ATP. To resolve this issue, we cloned the mouse TRPM6 (mTRPM6) cDNA and compared its functional characteristics to mouse TRPM7 (mTRPM7) after heterologous expression. Notably, we observed that mTRPM6 and mTRPM7 differentially regulate properties of heteromeric mTRPM6/7 channels: In the presence of mTRPM7, the extreme sensitivity of functionally expressed homomeric mTRPM6 to Mg2+ is tuned to higher concentrations, whereas mTRPM6 relieves mTRPM7 from the tight inhibition by Mg center dot ATP. Consequently, the association of mTRPM6 with mTRPM7 allows for high constitutive activity of mTRPM6/7 in the presence of physiological levels of Mg2+ and Mg center dot ATP, thus laying the mechanistic foundation for constant vectorial Mg2+ transport specifically into epithelial cells

    TRPM7 Kinase Is Essential for Neutrophil Recruitment and Function via Regulation of Akt/mTOR Signaling

    Get PDF
    During inflammation, neutrophils are one of the first responding cells of innate immunity, contributing to a fast clearance of infection and return to homeostasis. However, excessive neutrophil infiltration accelerates unsolicited disproportionate inflammation for instance in autoimmune diseases such as rheumatoid arthritis. The transient-receptor-potential channel-kinase TRPM7 is an essential regulator of immune system homeostasis. Naive murine T cells with genetic inactivation of the TRPM7 enzyme, due to a point mutation at the active site, are unable to differentiate into pro-inflammatory T cells, whereas regulatory T cells develop normally. Moreover, TRPM7 is vital for lipopolysaccharides (LPS)-induced activation of murine macrophages. Within this study, we show that the channel-kinase TRPM7 is functionally expressed in neutrophils and has an important impact on neutrophil recruitment during inflammation. We find that human neutrophils cannot transmigrate along a CXCL8 chemokine gradient or produce reactive oxygen species in response to gram-negative bacterial lipopolysaccharide LPS, if TRPM7 channel or kinase activity are blocked. Using a recently identified TRPM7 kinase inhibitor, TG100-115, as well as murine neutrophils with genetic ablation of the kinase activity, we confirm the importance of both TRPM7 channel and kinase function in murine neutrophil transmigration and unravel that TRPM7 kinase affects Akt1/mTOR signaling thereby regulating neutrophil transmigration and effector function. Hence, TRPM7 represents an interesting potential target to treat unwanted excessive neutrophil invasion

    TRPM7 is essential for Mg2+ homeostasis in mammals

    Get PDF
    Mg2+ is the second-most abundant cation in animal cells and is an essential cofactor in numerous enzymatic reactions. The molecular mechanisms controlling Mg2+ balance in the organism are not well understood. In this study, we report identification of TRPM7, a bifunctional protein containing a protein kinase fused to an ion channel, as a key regulator of whole body Mg2+ homeostasis in mammals. We generated TRPM7-deficient mice with the deletion of the kinase domain. Homozygous TRPM7Δkinase mice demonstrated early embryonic lethality, whereas heterozygous mice were viable, but developed signs of hypomagnesaemia and revealed a defect in intestinal Mg2+ absorption. Cells derived from heterozygous TRPM7Δkinase mice demonstrated reduced TRPM7 currents that had increased sensitivity to the inhibition by Mg2+. Embryonic stem cells lacking TRPM7 kinase domain displayed a proliferation arrest phenotype that can be rescued by Mg2+ supplementation. Our results demonstrate that TRPM7 is essential for the control of cellular and whole body Mg2+ homeostasis

    The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics

    Get PDF
    The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn2+, Mg2+, and Ca2+, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved. Here, we investigated the subunit composition of endogenous TRPM7 channels in rodent brain by multi-epitope affinity purification and high-resolution quantitative mass spectrometry (MS) analysis. We found that native TRPM7 channels are high-molecular-weight multi-protein complexes that contain the putative metal transporter proteins CNNM1-4 and a small G-protein ADP-ribosylation factor-like protein 15 (ARL15). Heterologous reconstitution experiments confirmed the formation of TRPM7/CNNM/ARL15 ternary complexes and indicated that complex formation effectively and specifically impacts TRPM7 activity. These results open up new avenues towards a mechanistic understanding of the cellular regulation and function of TRPM7 channels

    Macrophages and glia are the dominant P2X7-expressing cell types in the gut nervous system—No evidence for the role of neuronal P2X7 receptors in colitis

    Full text link
    The blockade or deletion of the pro-inflammatory P2X7 receptor channel has been shown to reduce tissue damage and symptoms in models of inflammatory bowel disease, and P2X7 receptors on enteric neurons were suggested to mediate neuronal death and associated motility changes. Here, we used P2X7-specific antibodies and nanobodies, as well as a bacterial artificial chromosome transgenic P2X7-EGFP reporter mouse model and P2rx7−/−^{-/-} controls to perform a detailed analysis of cell type-specific P2X7 expression and possible overexpression effects in the enteric nervous system of the distal colon. In contrast to previous studies, we did not detect P2X7 in neurons but found dominant expression in glia and macrophages, which closely interact with the neurons. The overexpression of P2X7 per se did not induce significant pathological effects. Our data indicate that macrophages and/or glia account for P2X7-mediated neuronal damage in inflammatory bowel disease and provide a refined basis for the exploration of P2X7-based therapeutic strategies

    TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice

    Get PDF
    Objective: TRPM7 (transient receptor potential cation channel, subfamily M, member 7) is a ubiquitously expressed bifunctional protein comprising a transient receptor potential channel segment linked to a cytosolic alpha-type serine/threonine protein kinase domain. TRPM7 forms a constitutively active Mg2+ and Ca2+ permeable channel, which regulates diverse cellular processes in both healthy and diseased conditions, but the physiological role of TRPM7 kinase remains largely unknown. Approach and Results: Here we show that point mutation in TRPM7 kinase domain deleting the kinase activity in mice (Trpm7(R/R)) causes a marked signaling defect in platelets. Trpm7(R/R) platelets showed an impaired PIP2 (phosphatidylinositol-4,5-bisphosphate) metabolism and consequently reduced Ca2+ mobilization in response to stimulation of the major platelet receptors GPVI (glycoprotein VI), CLEC-2 (C-type lectin-like receptor), and PAR (protease-activated receptor). Altered phosphorylation of Syk (spleen tyrosine kinase) and phospholipase C gamma 2 and beta 3 accounted for these global platelet activation defects. In addition, direct activation of STIM1 (stromal interaction molecule 1) with thapsigargin revealed a defective store-operated Ca2+ entry mechanism in the mutant platelets. These defects translated into an impaired platelet aggregate formation under flow and protection of the mice from arterial thrombosis and ischemic stroke in vivo. Conclusions: Our results identify TRPM7 kinase as a key modulator of phospholipase C signaling and store-operated Ca2+ entry in platelets. The protection of Trpm7(R/R) mice from acute ischemic disease without developing intracranial hemorrhage indicates that TRPM7 kinase might be a promising antithrombotic target

    A single lysine in the N-terminal region of store-operated channels is critical for STIM1-mediated gating

    Get PDF
    Store-operated Ca2+ entry is controlled by the interaction of stromal interaction molecules (STIMs) acting as endoplasmic reticulum ER Ca2+ sensors with calcium release–activated calcium (CRAC) channels (CRACM1/2/3 or Orai1/2/3) in the plasma membrane. Here, we report structural requirements of STIM1-mediated activation of CRACM1 and CRACM3 using truncations, point mutations, and CRACM1/CRACM3 chimeras. In accordance with previous studies, truncating the N-terminal region of CRACM1 or CRACM3 revealed a 20–amino acid stretch close to the plasma membrane important for channel gating. Exchanging the N-terminal region of CRACM3 with that of CRACM1 (CRACM3-N(M1)) results in accelerated kinetics and enhanced current amplitudes. Conversely, transplanting the N-terminal region of CRACM3 into CRACM1 (CRACM1-N(M3)) leads to severely reduced store-operated currents. Highly conserved amino acids (K85 in CRACM1 and K60 in CRACM3) in the N-terminal region close to the first transmembrane domain are crucial for STIM1-dependent gating of CRAC channels. Single-point mutations of this residue (K85E and K60E) eliminate store-operated currents induced by inositol 1,4,5-trisphosphate and reduce store-independent gating by 2-aminoethoxydiphenyl borate. However, short fragments of these mutant channels are still able to communicate with the CRAC-activating domain of STIM1. Collectively, these findings identify a single amino acid in the N terminus of CRAC channels as a critical element for store-operated gating of CRAC channels
    corecore