531 research outputs found

    Planets Around the K-Giants BD+20 274 and HD 219415

    Full text link
    We present the discovery of planet-mass companions to two giant stars by the ongoing Penn State- Toru\'n Planet Search (PTPS) conducted with the 9.2 m Hobby-Eberly Telescope. The less massive of these stars, K5-giant BD+20 274, has a 4.2 MJ minimum mass planet orbiting the star at a 578-day period and a more distant, likely stellar-mass companion. The best currently available model of the planet orbiting the K0-giant HD 219415 points to a Jupiter-mass companion in a 5.7-year, eccentric orbit around the star, making it the longest period planet yet detected by our survey. This planet has an amplitude of \sim18 m/s, comparable to the median radial velocity (RV) "jitter", typical of giant stars.Comment: 5 figures, 13 pages, accepted by the Astrophysical Journal. arXiv admin note: substantial text overlap with arXiv:1110.164

    The Penn State - Toru\'n Planet Search: target characteristics and recent results

    Full text link
    More than 450 stars hosting planets are known today but only approximately 30 planetary systems were discovered around stars beyond the Main Sequence. The Penn State-Toru\'n Planet Search, putting an emphasis on extending studies of planetary system formation and evolution to intermediate-mass stars, is oriented towards the discoveries of substellar-mass companions to a large sample of evolved stars using high-precision radial velocity technique. We present the recent status of our survey and detailed characteristic for ~350 late type giant stars, i.e. the new results of radial velocity analysis and stellar fundamental parameters obtained with extensive spectroscopic method. Moreover, in the future we will make an attempt to perform the statistical study of our sample and searching the correlations between the existence of substellar objects and stellar atmospheric parameters according to previous works which investigated the planetary companion impact on the evolution of the host stars.Comment: 7 pages, 5 figures, proceeding of the conference "Planetary Systems beyond the Main Sequence" (Bamberg, Germany, August 11-14, 2010) edited by S. Schuh, H. Drechsel and U. Heber, AIP Conference Series, part of PlanetsbeyondMS/2010 proceedings http://arxiv.org/html/1011.660

    „Statut sprawy elokacyjnej dla obywateli chełmińskich domy posiadających” – źródło ujawniające mechanizm dzierżawy gruntów miejskich Chełmna od XVII po XIX wiek

    Get PDF
    The term elocation probably derives from the Latin word eloco, meaning to rent. It refers to the allocation process  characteristicof Chełmno for townspeople, owners of houses and empty squares in the city, land outside the city. The purpose of this allocation was to give the townspeople the opportunity to obtain additional income enabling the maintenance of already existing houses and the development of empty squares in good condition. The income from leased land was also supposed to secure the property in the event of natural disasters and damages. The first elocation was carried out in 1602, the next ones took place every fifty years. For the elocation of 1852, its statute was preserved, showing the mechanism of allocating land to townspeople not only in the mid-nineteenth century.&nbsp

    Andrzej Mietz (1947-2014)

    Get PDF

    A Planet in a 0.6-AU Orbit Around the K0 Giant HD 102272

    Full text link
    We report the discovery of one or more planet-mass companions to the K0-giant HD 102272 with the Hobby-Eberly Telescope. In the absence of any correlation of the observed periodicities with the standard indicators of stellar activity, the observed radial velocity variations are most plausibly explained in terms of a Keplerian motion of at least one planet-mass body around the star. With the estimated stellar mass of 1.9M_\odot, the minimum mass of the confirmed planet is 5.9MJ_J. The planet's orbit is characterized by a small but nonzero eccentricity of ee=0.05 and the semi-major axis of 0.61 AU, which makes it the most compact one discovered so far around GK-giants. This detection adds to the existing evidence that, as predicted by theory, the minimum size of planetary orbits around intermediate-mass giants is affected by both planet formation processes and stellar evolution. The currently available evidence for another planet around HD 102272 is insufficient to obtain an unambiguous two-orbit solution.Comment: 10 pages, 5 figure

    Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes

    Get PDF
    P.M., J.M. and G. S. acknowledge support from the grant of National Science Centre of Poland No. 2011/02/A/ST3/00152 (Maestro), whereas M.Z. acknowledges support from the Polish National Science Centre under grant No. 2015/18/E/ST3/005 (Sonata Bis). The experiments have partially been performed within the Wroclaw University of Science and Technology laboratory infrastructure financed by the Polish Ministry of Science and Higher Education Grant No. 6167/IA/119/2012.The fundamental electronic and optical properties of elongated InAs nanostructures embedded in quaternary InGaAlAs barrier are investigated by means of high-resolution optical spectroscopy and many-body atomistic tight-binding theory. These wire-like shaped self-assembled nanostructures are known as quantum dashes and are typically formed during the molecular beam epitaxial growth on InP substrates. In this work we study properties of excitonic complexes confined in quantum dashes emitting in a broad spectral range from below 1.2 to 1.55 μm. We find peculiar trends for the biexciton and negative trion binding energies, with pronounced trion binding in smaller size quantum dashes. These experimental findings are then compared and qualitatively explained by atomistic theory. The theoretical analysis shows a fundamental role of correlation effects for the absolute values of excitonic binding energies. Eventually, we determine the bright exciton fine structure splitting (FSS), where both the experiment and theory predict a broad distribution of the splitting varying from below 50 to almost 180 μeV. We identify several key factors determining the FSS values in such nanostructures including quantum dash size variation and composition fluctuations.PostprintPeer reviewe
    corecore