442 research outputs found

    Shot Noise Suppression in Avalanche Photodiodes

    Full text link
    We identify a new shot noise suppression mechanism in a thin (~100 nm) heterostructure avalanche photodiode. In the low-gain regime the shot noise is suppressed due to temporal correlations within amplified current pulses. We demonstrate in a Monte Carlo simulation that the effective excess noise factors can be <1, and reconcile the apparent conflict between theory and experiments. This shot noise suppression mechanism is independent of known mechanisms such as Coulomb interaction, or reflection at heterojunction interfaces.Comment: Phys. Rev. Lett., accepted for publicatio

    Scaling of 1/f noise in tunable break-junctions

    Full text link
    We have studied the 1/f1/f voltage noise of gold nano-contacts in electromigrated and mechanically controlled break-junctions having resistance values RR that can be tuned from 10 Ω\Omega (many channels) to 10 kΩ\Omega (single atom contact). The noise is caused by resistance fluctuations as evidenced by the SVV2S_V\propto V^2 dependence of the power spectral density SVS_V on the applied DC voltage VV. As a function of RR the normalized noise SV/V2S_V/V^2 shows a pronounced cross-over from R3\propto R^3 for low-ohmic junctions to R1.5\propto R^{1.5} for high-ohmic ones. The measured powers of 3 and 1.5 are in agreement with 1/f1/f-noise generated in the bulk and reflect the transition from diffusive to ballistic transport

    Low frequency shot noise in double-barrier resonant-tunneling structures in a strong magnetic field

    Full text link
    Low frequency shot noise and dc current profiles for a double-barrier resonant-tunneling structure (DBRTS) under a strong magnetic field applied perpendicular to the interfaces have been studied. Both the structures with 3D and 2D emitter have been considered. The calculations, carried out with the Keldysh Green's function technique, show strong dependencies of both the current and noise profiles on the bias voltage and magnetic field. The noise spectrum appears sensitive to charge accumulation due to barriere capacitances and both noise and dc-current are extremely sensitive to the Landau levels' broadening in the emitter electrode and can be used as a powerful tool to investigate the latter. As an example, two specific shapes of the levels' broadening have been considered - a semi-elliptic profile resulting from self-consistent Born approximation, and a Gaussian one resulting from the lowest order cumulant expansion.Comment: 15 pages Revtex, 8 Postscript figures included. To be published in Journal of Physics: Condensed matte

    Statistical theory of shot noise in quasi-1D Field Effect Transistors in the presence of electron-electron interaction

    Full text link
    We present an expression for the shot noise power spectral density in quasi-one dimensional conductors electrostatically controlled by a gate electrode, that includes the effects of Coulomb interaction and of Pauli exclusion among charge carriers. In this sense, our expression extends the well known Landauer-Buttiker noise formula to include the effect of Coulomb interaction through induced fluctuations in the device potential. Our approach is based on the introduction of statistical properties of the scattering matrix and on a second-quantization many-body description. From a quantitative point of view, statistical properties are obtained by means of Monte Carlo simulations on a ensemble of different configurations of injected states, requiring the solution of the Poisson-Schrodinger equation on a three-dimensional grid, with the non-equilibrium Green functions formalism. In a series of example, we show that failure to consider the effects of Coulomb interaction on noise leads to a gross overestimation of the noise spectrum of quasi-one dimensional devices

    Anomalous crossover between thermal and shot noise in macroscopic diffusive conductors

    Get PDF
    We predict the existence of an anomalous crossover between thermal and shot noise in macroscopic diffusive conductors. We first show that, besides thermal noise, these systems may also exhibit shot noise due to fluctuations of the total number of carriers in the system. Then we show that at increasing currents the crossover between the two noise behaviors is anomalous, in the sense that the low frequency current spectral density displays a region with a superlinear dependence on the current up to a cubic law. The anomaly is due to the non-trivial coupling in the presence of the long range Coulomb interaction among the three time scales relevant to the phenomenon, namely, diffusion, transit and dielectric relaxation time.Comment: 4 pages, 2 figure

    In situ reduction of charge noise in GaAs/AlGaAs Schottky-gated devices

    Full text link
    We show that an insulated electrostatic gate can be used to strongly suppress ubiquitous background charge noise in Schottky-gated GaAs/AlGaAs devices. Via a 2-D self-consistent simulation of the conduction band profile we show that this observation can be explained by reduced leakage of electrons from the Schottky gates into the semiconductor through the Schottky barrier, consistent with the effect of "bias cooling". Upon noise reduction, the noise power spectrum generally changes from Lorentzian to 1/f1/f type. By comparing wafers with different Al content, we exclude that DX centers play a dominant role in the charge noise.Comment: 4 pages, 3 figure

    Anomalous Transient Current in Nonuniform Semiconductors

    Full text link
    Nonequilibrium processes in semiconductors are considered with highly nonuniform initial densities of charge carriers. It is shown that there exist such distributions of charge densities under which the electric current through a sample displays quite abnormal behaviour flowing against the applied voltage. The appearance of this negative electric current is a transient phenomenon occurring at the initial stage of the process. After this anomalous negative fluctuation, the electric current becomes normal, i.e. positive as soon as the charge density becomes more uniform. Several possibilities for the practical usage of this effect are suggested.Comment: 1 file, 11 pages, RevTex, no figure

    The influence of charge detection on counting statistics

    Full text link
    We consider the counting statistics of electron transport through a double quantum dot with special emphasis on the dephasing induced by a nearby charge detector. The double dot is embedded in a dissipative enviroment, and the presence of electrons on the double dot is detected with a nearby quantum point contact. Charge transport through the double dot is governed by a non-Markovian generalized master equation. We describe how the cumulants of the current can be obtained for such problems, and investigate the difference between the dephasing mechanisms induced by the quantum point contact and the coupling to the external heat bath. Finally, we consider various open questions of relevance to future research.Comment: 15 pages, 2 figures, Contribution to 5-th International Conference on Unsolved Problems on Noise, Lyon, France, June 2-6, 200

    Amplification by stochastic interference

    Full text link
    A new method is introduced to obtain a strong signal by the interference of weak signals in noisy channels. The method is based on the interference of 1/f noise from parallel channels. One realization of stochastic interference is the auditory nervous system. Stochastic interference may have broad potential applications in the information transmission by parallel noisy channels
    corecore