8,578 research outputs found

    Dimer states in atomic mixtures

    Full text link
    A mixture of heavy atoms in a Mott state and light spin-1/2 fermionic atoms is studied in an optical lattice. Inelastic scattering processes between both atomic species excite the heavy atoms and renormalize the tunneling rate as well as the interaction of the light atoms. An effective Hamiltonian for the latter is derived that describes tunneling of single fermions, tunneling of fermionic pairs and an exchange of fermionic spins. Low energy states of this Hamiltonian are a N\'eel state for strong effective repulsion, dimer states for moderate interaction, and a density wave of paired fermions for strong effective attraction.Comment: 10 pages, 3 figure, extended versio

    Very high energy emission from the hard spectrum sources HESS J1641-463, HESS J1741-302 and HESS J1826-130

    Full text link
    A recent study of the diffuse Ī³\gamma-ray emission in the Central Molecular Zone using very high energy (VHE, E >> 0.1 TeV) H.E.S.S. data suggests that the Galactic Center (GC) is the most plausible supplier of Galactic ultra-relativistic cosmic-rays (CRs) up to the knee at about 1015^{15} eV (PeV). However, the GC might not be the only source capable to accelerate CRs up to PeV energies in the Galaxy. Here we present H.E.S.S. data analysis results and interpretation of three H.E.S.S. sources, with spectra extending beyond 10 TeV and relatively hard spectral indices compared with the average spectral index of H.E.S.S. sources, namely HESS J1641-463, HESS J1741-302 and HESS J1826-130. Although the nature of these VHE Ī³\gamma-ray sources is still open, their spectra suggest that the astrophysical objects producing such emission must be capable of accelerating the parental particle population up to energies of at least several hundreds of TeV. Assuming a hadronic scenario, dense gas regions can provide rich target material for accelerated particles to produce VHE Ī³\gamma-ray emission via proton-proton interactions followed by a subsequent Ļ€0\pi^{0} decay. Thus, detailed investigations of the interstellar medium along the line of sight to all of these sources have been performed by using data from available atomic and molecular hydrogen surveys. The results point out the existence of dense interstellar gas structures coincident with the best fit positions of these sources. One can find possible hadronic models with CRs being accelerated close to the PeV energies to explain the Ī³\gamma-ray emission from all of these sources, which opens up the possibility that a population of PeV CR accelerators might be active in the Galaxy.Comment: 8 pages, 2 figures, in Proceedings of 35th ICRC, Busan (Korea) 201

    Epic Human Failure on June 30, 2013

    Get PDF
    Nineteen Prescott Fire Department, Granite Mountain Hot Shot (GMHS) wildland firefighters and supervisors (WFF), perished on the June 2013 Yarnell Hill Fire (YHF) in Arizona. The firefighters left their Safety Zone during forecast, outflow winds, triggering explosive fire behavior in drought-stressed chaparral. Why would an experienced WFF Crew, leave ā€˜good blackā€™ and travel downslope through a brush-filled chimney, contrary to their training and experience? An organized Serious Accident Investigation Team (SAIT) found, ā€œā€¦ no indication of negligence, reckless actions, or violations of policy or protocol.ā€ Despite this, many WFF professionals deemed the catastrophe, ā€œā€¦ the final, fatal link, in a long chain of bad decisions with good outcomes.ā€ This paper is a theoretical and realistic examination of plausible, faulty, human decisions with prior good outcomes; internal and external impacts, influencing the GMHS; and two explanations for this catastrophe: Individual Blame Logic and Organizational Function Logic, and proposed preventive mitigations

    HESS J1826āˆ’-130: A Very Hard Ī³\gamma-Ray Spectrum Source in the Galactic Plane

    Full text link
    HESS J1826āˆ’-130 is an unidentified hard spectrum source discovered by H.E.S.S. along the Galactic plane, the spectral index being Ī“\Gamma = 1.6 with an exponential cut-off at about 12 TeV. While the source does not have a clear counterpart at longer wavelengths, the very hard spectrum emission at TeV energies implies that electrons or protons accelerated up to several hundreds of TeV are responsible for the emission. In the hadronic case, the VHE emission can be produced by runaway cosmic-rays colliding with the dense molecular clouds spatially coincident with the H.E.S.S. source.Comment: 6 pages, 3 figures, Proceedings of the 6th International Symposium on High Energy Gamma-Ray Astronomy (Gamma2016), Heidelberg, German

    A new electromagnetic mode in graphene

    Full text link
    A new, weakly damped, {\em transverse} electromagnetic mode is predicted in graphene. The mode frequency Ļ‰\omega lies in the window 1.667<ā„Ļ‰/Ī¼<21.667<\hbar\omega/\mu<2, where Ī¼\mu is the chemical potential, and can be tuned from radiowaves to the infrared by changing the density of charge carriers through a gate voltage.Comment: 5 pages, 4 figure

    Fingerprints of Spin-Orbital Physics in Crystalline O2_2

    Full text link
    The alkali hyperoxide KO2_2 is a molecular analog of strongly-correlated systems, comprising of orbitally degenerate magnetic O2āˆ’_2^- ions. Using first-principles electronic structure calculations, we set up an effective spin-orbital model for the low-energy \textit{molecular} orbitals and argue that many anomalous properties of KO2_2 replicate the status of its orbital system in various temperature regimes.Comment: 4 pages, 2 figures, 1 tabl

    The SPICE carbon isotope excursion in Siberia: a combined study of the upper Middle Cambrian-lowermost Ordovician Kulyumbe River section, northwestern Siberian Platform

    Get PDF
    An integrated, high-resolution chemostratigraphic (C, O and Sr isotopes) and magnetostratigraphic study through the upper Middle Cambrianā€“lowermost Ordovician shallowmarine carbonates of the northwestern margin of the Siberian Platform is reported. The interval was analysed at the Kulyumbe section, which is exposed along the Kulyumbe River, an eastern tributary of the Enisej River. It comprises the upper Ustā€™-Brus, Labaz, Orakta, Kulyumbe, Ujgur and lower Iltyk formations and includes the Steptoean positive carbon isotopic excursion (SPICE) studied here in detail from upper Cambrian carbonates of the Siberian Platform for the first time. The peak of the excursion, showing Ī“13C positive values as high as+4.6ā€°and least-altered 87Sr/86Sr ratios of 0.70909, is reported herein from the Yurakhian Horizon of the Kulyumbe Formation. The stratigraphic position of the SPICE excursion does not support traditional correlation of the boundary between theOrakta and Labaz formations at the Kulyumbe River with its supposedly equivalent level in Australia, Laurentia, South China and Kazakhstan, where the Glyptagnostus stolidotus and G. reticulatus biozones are known to immediately precede the SPICE excursion and span the Middleā€“Upper Cambrian boundary. The Cambrianā€“Ordovician boundary is probably situated in the middle Nyajan Horizon of the Iltyk Formation, in which carbon isotope values show a local maximum below a decrease in the upper part of the Nyajan Horizon, attributed herein to the Tremadocian Stage. A refined magnetic polarity sequence confirms that the geomagnetic reversal frequency was very high during Middle Cambrian times at 7ā€“10 reversals per Ma, assuming a total duration of about 10 Ma and up to 100 magnetic intervals in the Middle Cambrian. By contrast, the sequence attributed herein to the Upper Cambrian on chemostratigraphic grounds contains only 10ā€“11 magnetic intervals

    Cosmogenic activation of Germanium and its reduction for low background experiments

    Full text link
    Production of 60^{60}Co and 68^{68}Ge from stable isotopes of Germanium by nuclear active component of cosmic rays is a principal background source for a new generation of 76^{76}Ge double beta decay experiments like GERDA and Majorana. The biggest amount of cosmogenic activity is expected to be produced during transportation of either enriched material or already grown crystal. In this letter properties and feasibility of a movable iron shield are discussed. Activation reduction factor of about 10 is predicted by simulations with SHIELD code for a simple cylindrical configuration. It is sufficient for GERDA Phase II background requirements. Possibility of further increase of reduction factor and physical limitations are considered. Importance of activation reduction during Germanium purification and detector manufacturing is emphasized.Comment: 10 pages, 3 tables, 6 figure

    Testing the bounds on quantum probabilities

    Full text link
    Bounds on quantum probabilities and expectation values are derived for experimental setups associated with Bell-type inequalities. In analogy to the classical bounds, the quantum limits are experimentally testable and therefore serve as criteria for the validity of quantum mechanics.Comment: 9 pages, Revte
    • ā€¦
    corecore