37 research outputs found
Beam selection for stereotactic ablative radiotherapy using Cyberknife with multileaf collimation.
The Cyberknife system (Accuray Inc., Sunnyvale, CA) enables radiotherapy using stereotactic ablative body radiotherapy (SABR) with a large number of non-coplanar beam orientations. Recently, a multileaf collimator has also been available to allow flexibility in field shaping. This work aims to evaluate the quality of treatment plans obtainable with the multileaf collimator. Specifically, the aim is to find a subset of beam orientations from a predetermined set of candidate directions, such that the treatment quality is maintained but the treatment time is reduced. An evolutionary algorithm is used to successively refine a randomly selected starting set of beam orientations. By using an efficient computational framework, clinically useful solutions can be found in several hours. It is found that 15Â beam orientations are able to provide treatment quality which approaches that of the candidate beam set of 110Â beam orientations, but with approximately half of the estimated treatment time. Choice of an efficient subset of beam orientations offers the possibility to improve the patient experience and maximise the number of patients treated
A kernel-based dose calculation algorithm for kV photon beams with explicit handling of energy and material dependencies.
Objective Mimicking state-of-the-art patient radiotherapy with high-precision irradiators for small animals is expected to advance the understanding of dose-effect relationships and radiobiology in general. We work on the implementation of intensity-modulated radiotherapy-like irradiation schemes for small animals. As a first step, we present a fast analytical dose calculation algorithm for keV photon beams.Methods We follow a superposition-convolution approach adapted to kV X-rays, based on previous work for microbeam therapy. We assume local energy deposition at the photon interaction point due to the short electron ranges in tissue. This allows us to separate the dose calculation into locally absorbed primary dose and the scatter contribution, calculated in a point kernel approach. We validate our dose model against Geant4 Monte Carlo (MC) simulations and compare the results to Muriplan (XStrahl Ltd, Camberley, UK).Results For field sizes of (1 mm)2 to (1 cm)2 in water, the depth dose curves show a mean disagreement of 1.7% to MC simulations, with the largest deviations in the entrance region (4%) and at large depths (5% at 7 cm). Larger discrepancies are observed at water-to-bone boundaries, in bone and at the beam edges in slab phantoms and a mouse brain. Calculation times are in the order of 5 s for a single beam.Conclusion The algorithm shows good agreement with MC simulations in an initial validation. It has the potential to become an alternative to full MC dose calculation. Advances in knowledge: The presented algorithm demonstrates the potential of kernel-based dose calculation for kV photon beams. It will be valuable in intensity-modulated radiotherapy and inverse treatment planning for high precision small-animal radiotherapy
Combining radiation with hyperthermia: a multiscale model informed by in vitro experiments
Funding: Cancer Research UK. Research at The Institute of Cancer Research is supported by Cancer Research UK under Programme C33589/A19727. Peter Ziegenhein is supported by Cancer Research UK under Programme C33589/A19908.Combined radiotherapy and hyperthermia offer great potential for the successful treatment of radio-resistant tumours through thermo-radiosensitization. Tumour response heterogeneity, due to intrinsic, or micro-environmentally induced factors, may greatly influence treatment outcome, but is difficult to account for using traditional treatment planning approaches. Systems oncology simulation, using mathematical models designed to predict tumour growth and treatment response, provides a powerful tool for analysis and optimization of combined treatments. We present a framework that simulates such combination treatments on a cellular level. This multiscale hybrid cellular automaton simulates large cell populations (up to 107 cells) in vitro, while allowing individual cell-cycle progression, and treatment response by modelling radiation-induced mitotic cell death, and immediate cell kill in response to heating. Based on a calibration using a number of experimental growth, cell cycle and survival datasets for HCT116 cells, model predictions agreed well (R2 > 0.95) with experimental data within the range of (thermal and radiation) doses tested (0–40 CEM43, 0–5 Gy). The proposed framework offers flexibility for modelling multimodality treatment combinations in different scenarios. It may therefore provide an important step towards the modelling of personalized therapies using a virtual patient tumour.Publisher PDFPeer reviewe
Assessment of MLC tracking performance during hypofractionated prostate radiotherapy using real-time dose reconstruction
By adapting to the actual patient anatomy during treatment, tracked multileaf collimator (MLC) treatment deliveries offer an opportunity for margin reduction and healthy tissue sparing. This is assumed to be especially relevant for hypofractionated protocols in which intrafractional motion does not easily average out. In order to confidently deliver tracked treatments with potentially reduced margins, it is necessary to monitor not only the patient anatomy but also the actually delivered dose during irradiation. In this study, we present a novel real-time online dose reconstruction tool which calculates actually delivered dose based on pre-calculated dose influence data in less than 10 ms at a rate of 25 Hz. Using this tool we investigate the impact of clinical target volume (CTV) to planning target volume (PTV) margins on CTV coverage and organ-at-risk dose. On our research linear accelerator, a set of four different CTV-to-PTV margins were tested for three patient cases subject to four different motion conditions. Based on this data, we can conclude that tracking eliminates dose cold spots which can occur in the CTV during conventional deliveries even for the smallest CTV-to-PTV margin of 1 mm. Changes of organ-at-risk dose do occur frequently during MLC tracking and are not negligible in some cases. Intrafractional dose reconstruction is expected to become an important element in any attempt of re-planning the treatment plan during the delivery based on the observed anatomy of the day