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Abstract.  The Cyberknife system (Accuray Inc., Sunnyvale, CA) enables radiotherapy using 14 

stereotactic ablative body radiotherapy (SABR) with a large number of non-coplanar beam 15 

orientations.  Recently, a multileaf collimator has also been available to allow flexibility in 16 

field shaping.  This work aims to evaluate the quality of treatment plans obtainable with the 17 

multileaf collimator.  Specifically, the aim is to find a subset of beam orientations from a 18 

predetermined set of candidate directions, such that the treatment quality is maintained but the 19 

treatment time is reduced.  An evolutionary algorithm is used to successively refine a 20 

randomly selected starting set of beam orientations.  By using an efficient computational 21 

framework, clinically useful solutions can be found in several hours.  It is found that 15 beam 22 

orientations are able to provide treatment quality which approaches that of the candidate beam 23 

set of 110 beam orientations, but with approximately half of the estimated treatment time.  24 

Choice of an efficient subset of beam orientations offers the possibility to improve the patient 25 

experience and maximise the number of patients treated. 26 

 27 

Highlights: 28 

 A fast optimisation framework is used to create IMRT SABR plans for Cyberknife. 29 

 The value of the Cyberknife multileaf collimator is investigated. 30 

 A beam selection algorithm is used to determine a subset of beam orientations. 31 

  Fifteen selected beams are sufficient to create high-quality treatment plans. 32 

 Treatment time is minimised using this approach. 33 

 34 
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Abbreviations 38 

BOS  Beam orientation selection 39 

CT  Computed tomography 40 

IMRT  Intensity-modulated radiotherapy 41 

L-BFGS  Limited-memory Broyden-Fletcher-Goldfarb-Shanno 42 

MLC  Multileaf collimator 43 

PTV  Planning target volume 44 

SABR  Stereotactic ablative body radiotherapy 45 
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1.  Introduction 46 

The Cyberknife system (Accuray Inc., Sunnyvale, CA) includes a multileaf collimator 47 

(MLC), which allows maximal flexibility in field shaping and fewer monitor units in stereotactic 48 

radiosurgery than with a cone collimator [1, 2]. The MLC consists of 26 leaf pairs, each of width 49 

3.85mm, giving a maximum field size of 115 mm × 100 mm at a nominal source-axis distance of 800 50 

mm. 51 

The standard beam set for a Cyberknife stereotactic ablative body radiotherapy (SABR) 52 

treatment uses 110 beams, referred to as nodes.  These are typically non-isocentric and non-coplanar, 53 

and are chosen so as to provide a collision-free path for the delivery robot around the patient [1].  54 

However, such a large number of beams is unlikely to be necessary for many, if not all, treatment 55 

sites, and may lead to an excessive treatment delivery time without much benefit [3].  This work 56 

therefore aims to determine an optimal subset of beams for each patient, such that the treatment 57 

quality approaches that of the full node set.  This is accomplished firstly by examining predetermined 58 

beam subsets defined by the manufacturer, and secondly by applying a beam selection technique. 59 

A number of approaches have previously been used for beam orientation selection in 60 

radiotherapy.  As well as the implementation of methods for conformal radiotherapy [4], the more 61 

complex problem of determining beam orientations and fluence maps for intensity-modulated 62 

radiotherapy (IMRT) has been approached by beam’s eye view score methods [5, 6], combination of 63 

individually selected beams [7], successive addition of beams to a pool [8-10], angle perturbation [11-64 

13] and cluster analysis [14].  Other methods have also been reported [15-21].  All of these methods 65 

benefit from fast optimisation methods [22, 23] and comparisons of methods have helped to clarify 66 

the benefits of these approaches [24, 25]. 67 

Some of the recent work on trajectory optimisation for arc therapy can also be applied 68 

usefully to the question of beam orientation selection for Cyberknife.  For example, Smyth et al. [26, 69 

27] find the least cost path through a cost function map based on individual beam metrics.  Wild et al. 70 

[28] also use a path connection algorithm to find the shortest path between desirable orientations.  71 

Locke and Bush [29] also use a path search algorithm, but take into account the connectedness of the 72 

areas of the beam’s eye view which are useful for beam delivery. 73 

Several methods have focused specifically on the Cyberknife device.  For example, Kearney 74 

et al. [30] describe a method for producing arc trajectories for Cyberknife.  A subset of optimal beams 75 

is selected from a complete library of beams, and then these beams are joined using a path selection 76 

method, and formed into a continuous arc. 77 

 78 

 79 

 80 
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2.  Methods and materials 81 

2.1.  Patients and treatment plans 82 

Four patient cases were considered in this study, with tumour sites of prostate and base of 83 

seminal vesicles, lung, liver and partial breast.  The prostate case was planned with two distinct 84 

techniques, as described below, leading to a total of five types of treatment plan.  All treatment plans 85 

used a SABR technique, with hypofractionated dose prescriptions of 3-5 fractions (see Table 1). 86 

 87 

Table 1.  Fractionation schemes used in this study. 88 

 89 

CASE TOTAL DOSE (Gy) FRACTIONS PROTOCOL 

Prostate A 36.25 5 RTOG 0938 

Prostate B 38.00 4 Fuller et al. [31, 32] 

Lung 50.00 5 RTOG 0813 

Liver 42.75 3 Vautravers-Dewas et al. [33] 

Partial breast 35.00 5 RTOG 0413 

 90 

 91 

Patient cases were imported into the in-house treatment planning system DynaPlan and dose 92 

was calculated using a standalone dose calculation module supplied by Accuray Inc., so as to 93 

accurately represent dose delivered by the Cyberknife system.  The computational framework 94 

required that appropriate priorities were assigned to the different anatomical structures outlined on the 95 

CT images so that the optimizer would work correctly in the case of overlap (see Figure 1).  Each 96 

voxel in the volume was assigned to one structure only. 97 

 98 

 99 

 100 
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 101 

 102 

Figure 1.  Overlap and priorities.  Planning target volume (PTV) has the highest priority, followed by 103 

critical structures such as rectum and bladder.  Three annular structures, (A1, A2, A3) with width 10 mm then 104 

follow, and the remainder of the body then has the lowest priority. 105 

 106 

 107 

The inverse planning method required the dose, di, at voxel i to be calculated as [28]: 108 

 109 


j

jiji wdd ,           (1) 110 

 111 

where dij was the dose at voxel i due to fluence wj at element j of the intensity matrices (Figure 2).   112 

 113 

 114 

Figure 2.  Dose model. 115 
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Accordingly, the dose-influence matrix dij was determined by calculating dose distributions for fields 116 

of one intensity bixel in size.  This was an approximation as the dose due to a single large field was 117 

not exactly equal to the sum of doses delivered by a sum of individual bixels, but was considered 118 

accurate enough for this study.  In all cases, the fluence bixel size was 2 × MLC leaf width by 5 mm 119 

and the fluence grid approximately covered the beam’s eye view of the PTV with a 5 mm margin.  In 120 

some regions of some of the beams, the fluence grid was greater in extent than the PTV, and in others, 121 

it was less.  This imperfection was not found to have a significant impact on the results.  The 122 

calculation voxel size was 2 × CT pixel width by 2 × CT pixel height × CT slice spacing.  A lower 123 

dose threshold of 1/60000 of the maximum dose of each dij component was used, which in practice 124 

meant that all scattered dose was incorporated into the inverse planning.  The dij matrices covered the 125 

entire patient, so that the components relating to each beam totalled approximately 1 GB in size.  All 126 

dose voxels were used in structures for which optimisation objectives were specified. 127 

Each treatment plan consisted of 110 beam orientations, using an average of two apertures per 128 

beam orientation (node).  Treatment plans were optimized using an objective function, F, summed 129 

over a number of volumes, i, each with individual objective value fi: 130 

 131 


i

ifF ,           (2) 132 

 133 

with fi defined as: 134 

 135 

   2
0
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 137 

where ai was a structure-specific importance factor.  Both the minimum and maximum terms were 138 

used for targets, while only the maximum term was used for normal tissues.  A number of iterations, 139 

x, of an iterative gradient descent method were then used to reach a solution for the intensity values in 140 

the fluence matrix: 141 

 142 

 
0

1


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j

x

j
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j
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 144 

where α was a relaxation parameter.  The direction vector p
x
 was in principle given as: 145 

 146 

    xxx wFwFp 
12

.         (5) 147 

 148 
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However, the low-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method was used to avoid 149 

the memory-intensity calculation of the inverse Hessian matrix    12 
 xwF .  In this scheme, the 150 

direction vectors were obtained by a recursion relation [28]: 151 

 152 

 FFBpp xx  ,1
.         (6) 153 

 154 

Following fluence optimisation, sequencing was carried out using a standard sequencing 155 

method [34], and aperture optimisation was then carried out, also using a gradient descent method 156 

[28, 35].  This method converted the aperture optimisation problems into a fluence optimisation 157 

problem, so that the same L-BFGS method could be used for aperture optimisation as for fluence 158 

optimisation.  No attempt was made to optimise the numbers of beam directions, apertures or monitor 159 

units (MU) in the final plan. 160 

This method was implemented in a fast multi-threaded planning framework [35].  This 161 

enabled a solution for 110 nodes to be obtained in less than 15 minutes for 40 fluence iterations and 162 

40 iterations of direct aperture optimisation (see Figure 3).  The optimisation itself was implemented 163 

in a high-performance environment, which was a dual Intel Xeon E5-2650 with 128 GB RAM. 164 

 165 

 166 

Figure 3.  Computational system. 167 

 168 

The starting point for comparisons was to use an Accuray-supplied body nodeset with 110 169 

nodes (Figure 4), with a variable number of apertures being specified to the optimizer.  This number 170 

was 2 for the prostate cases, 1 for liver and breast cases, and 3 for the lung case, reflecting the degree 171 

of intricacy required in the solution.  An Accuray-supplied subset of the body nodeset, containing 36 172 

nodes spaced evenly over the same total solid angle, was also used.  This approach was similar to the 173 

standardised bouquet determined by Yuan et al. [36]. 174 
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 175 

 176 

Figure 4.  The body nodeset from which the beams were selected.  (a) transaxial view, (b) coronal view. 177 

 178 

 179 

Beam selection was carried out using a variation of the the evolutionary algorithm of Li et al. 180 

[37], which was also similar to the approach of Hou et al. [38], who used an evolutionary algorithm 181 

for orientation selection and a simulated annealing algorithm for intensity calculation.  The concept of 182 

nesting an intensity calculation inside a beam orientation loop was also used by Rowbottom et al. 183 

[39].  Using this method, 15 beams were selected from the 110-node body nodeset.  Other numbers of 184 

beams were investigated and 15 beams were found to be the practical minimum that allowed for 185 

production of a high-quality dose distribution.  For all orientation-selected cases, five segments per 186 

beam were allowed, except for the liver case, where the relative simplicity of the planning target 187 

volume (PTV) required only three segments per beam to be used.  The method is summarised in 188 

figure 5. 189 

 190 

 191 
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 192 

 193 

Figure 5.  Concepts involved in the evolutionary algorithm used in this work.  The two left-hand lists 194 

represent two node sets in a population, the numbers representing node indices.  The offspring has features of 195 

both of these two individuals, with occasional mutations. 196 

 197 

 198 

A population of 20 plans was used in this work, representing a collection of plans whose 199 

properties were to be successively improved by the evolutionary algorithm.  The beam orientations for 200 

each plan were chosen initially by randomly selecting beam indices from the candidate node set of 201 

110 beams.  This population of individual treatment plans, or individuals, then underwent 20 202 

iterations, or generations.  The generation was defined as the population at a given phase in the 203 

optimisation process.  At each iteration, 20 new individuals were generated from the current 20 204 

individuals, to form the next generation.  In this way, the population was maintained at 20 throughout 205 

the scheme.  The genetic encoding consisted of a list of beam indices used by each individual or 206 

treatment plan.  Note that the fitness function was taken to be the objective function, F, as defined in 207 

equation (2), with lower values representing greater fitness. 208 

To generate a new individual, the fittest tenth of the current population was identified 209 

according to objective function value, and these two individuals were combined.  Each gene, i.e. each 210 

beam index, of the new individual was determined by randomly using a beam index from either of the 211 

parent genes. In this crossover or recombination operation, the probability of using a beam index from 212 

one parent was 0.4 and the probability of using a beam index from the other was 0.6, following 213 

empirical tests.  If the new beam index was identical to a beam index already existing in the new 214 

individual, another attempt was made to generate that particular beam index, and if this also matched 215 

an existing beam index, it was accepted anyway.  This new beam index then underwent mutation, 216 

with a probability of 0.05.  This involved replacing it with another beam index from the set of 217 
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candidate beam indices.  As there was no simple relationship between beam index and beam 218 

orientation, (i.e. beams with adjacent indices did not necessarily have adjacent beam orientations), no 219 

attempt was made to select similar indices or orientations.  Mutation therefore involved a change of 220 

index and orientation that could be considerable. 221 

  The end result of this process was that each randomly selected pair of individuals gave rise 222 

to an offspring.  After 20 of such offspring were generated, they replaced the original individuals, so 223 

that a new generation of 20 plans was produced.  Each of these plans was then optimised using 20 224 

fluence iterations, sequencing, and 20 iterations of direct aperture optimisation.  The whole process 225 

was then repeated for 20 iterations.  In the implementation of Li et al. [37], the optimal plan was taken 226 

as the fittest individual in the final generation.  However, in our implementation, the optimal plan was 227 

taken as the fittest individual to be found in any of the generations.  This was used to provide a similar 228 

effect to elitism, in which the fittest individuals are retained for subsequent generations. 229 

The parameters described above were chosen following empirical tests to determine the 230 

optimum settings.  To demonstrate that the selected values were optimum, the values were perturbed 231 

and the progress of the beam orientation selection (BOS) was evaluated for the prostate B case and the 232 

liver case.  Several different combinations of the crossover proportions and the mutation rate were 233 

evaluated.  Furthermore, to evaluate the statistical accuracy of the evolutionary algorithm, these cases 234 

were recalculated 25 times using different seed values in the random number generator.  The 235 

adequacy of the number of plans and number of generations was also assessed for the prostate B case 236 

by recalculating using 100 plans in 100 generations. 237 

Sometimes the importance factors were adjusted during production of the plans using BOS.  238 

This was mainly to reduce the surface dose when using relatively few beam orientations.  This meant 239 

that the objective values were different for the BOS plan and the reference plan produced from the 240 

body or even path, even for identical dose distributions.  Consequently, where objective values were 241 

compared, the BOS objective value was compared against that for a re-optimised plan using the body 242 

or preset short path but with the same importance factors as used in the BOS plan. 243 

Plans were compared using dose statistics and conformity index, which was defined as the 244 

volume receiving the prescribed dose divided by the volume of the planning target volume.  245 

Treatment times were estimated according to a vendor-supplied algorithm incorporating initial patient 246 

setup, beam-on, MLC reshaping between apertures, robot traversal between nodes and imaging. 247 

 248 

 249 

 250 

 251 

 252 
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3.  Results 253 

The transaxial dose distributions are shown in Figure 6 for the five cases with the 110-node 254 

body node set.  The dose distributions shown are for the dij-based dose distribution output from the 255 

optimiser, without recalculation of the apertures as complete beams.  It can be seen that the dose 256 

distributions are conformal in nature, with appropriate sparing of organs at risk near to the PTV.  A 257 

summary of results over the five patients for the body path, the preset short path and BOS path are 258 

shown in Table 2. 259 

 260 

 261 

 262 

 263 

Figure 6.  Transaxial dose distributions for (a) prostate A, (b) prostate B, (c) lung, (d) liver and (e) partial breast 264 

cases. The dose levels as a percentage of the prescription dose are shown in each case. 265 
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Table 2.  Plan statistics for the five patient cases. 266 

 267 

 BODY 

PATH 

PRESET 

SHORT PATH 

ORIENTATION 

SELECTED PATH 

Number of nodes 110 36 15 

Inverse planning time per run (mins) 10 5 120 

Median apertures 310 158 165 

Median MU per Gy 1575 1881 1499 

Median conformality index 1.03 1.05 1.06 

Median estimated treatment time (mins) 51 37 34 

 268 

 269 

  The orientation selection takes longer for inverse planning than the other techniques due to the 270 

number of plan optimisations required.  The number of apertures approximately follows the number 271 

of nodes in the plan for the body path and the preset short path, although there is a similar number of 272 

apertures for the BOS path as with the preset short path, for rather fewer beams.  The estimated 273 

treatment time follows accordingly.  The monitor units per gray and conformity index are 274 

approximately constant for all three of the types of treatment plan. 275 

The impact of the parameters used in the evolutionary algorithm on the median final objective 276 

value for the BOS result in the prostate B case is shown in Table 3.  Run 1, the standard case, is 277 

shown to be competitive with the other runs using different parameters.  Only run 7 has a median final 278 

objective value which is appreciably lower than that of run 1, but takes many hours to achieve the 279 

result.  Figure 7 shows the objective values for 20 iterations of the BOS scheme for the prostate B 280 

case, corresponding to run 1 of Table 3.  The optimisation rapidly reaches convergence to a fit 281 

population of treatment plans.  The minimum objective value encountered is better than that of the 282 

preset short path and approaching that of the body path.  It can be seen that there is scope to reduce 283 

the number of iterations, as the global solution is found relatively rapidly.  Figure 8 shows the results 284 

of the evolutionary algorithm for the same case when the BOS scheme is repeated 25 times (run 6).  285 

The same pattern of convergence is seen as with the single run, and the small range of the median 286 

objective function values shows that the algorithm is statistically stable.  Note that Figure 7 shows the 287 
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objective values of the individuals, whereas Figure 8 shows the median objective values of various 288 

runs. 289 

Similar results are also seen in Figure 9 for the case of 100 individuals in 100 generations (run 290 

7).  Although there is a large range in the objective function values at each  generation, the median 291 

objective value reaches a constant value after around 20 iterations.  The objective value reaches a 292 

slightly smaller value than in Figure 7, showing that there is a small additional benefit in the larger 293 

population size.  However, the benefit is not large, and the use of 20 individuals in 20 generations is 294 

considered to be adequate for the purposes of providing good quality dose distributions. 295 

 296 

 297 

 298 

Table 3.  Impact of varying the parameters of the evolutionary algorithm in the prostate B case.  The 299 

pertinent changes in parameter values are shown in bold type.  Note that the median and range final objective 300 

values for run 6 relate to the median value attained by the population at each of multiple runs rather than the 301 

value attained by the individuals at a single run. 302 

 303 

PARAMETER RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 RUN 6 RUN 7 

Population size (plans) 20 20 20 20 20 20 100 

Generations 20 20 20 20 20 20 100 

Statistical repeats 1 1 1 1 1 25 1 

Crossover ratio 0.4 0.3 0.5 0.4 0.4 0.4 0.4 

Mutation probability 0.05 0.05 0.05 0.01 0.1 0.05 0.05 

Final objective median 512 509 515 518 526 536 493 

Final objective range 466-664 483-659 461-568 482-594 489-849 512-555 432-945 

Lowest objective found 456 481 457 482 485 447 418 

 304 

 305 
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 306 

Figure 7.  Convergence of the objective function for the prostate B case with 15 beams selected from 110 307 

candidate beams.  The boxes represent the median and the 25
th

 and 75
th

 percentiles of the 20 individual objective 308 

function values at each generation.  The error bars represent the range of these 20 objective values.  The green 309 

dotted line shows the objective value for the preset short path and the blue dashed line shows the objective value 310 

for the body path. 311 

 312 

 313 

 314 

Figure 8.  Statistical performance of the evolutionary algorithm for the prostate B case.  The algorithm has been 315 

run 25 times and the median objective value of the population of 20 individuals recorded for each run.  The 316 

boxes represent the median and the 25
th

 and 75
th

 percentiles of the 25 median objective function values at each 317 

generation.  The error bars represent the range of these 25 median objective values.  The green dotted line shows 318 

the objective value for the preset short path and the blue dashed line shows the objective value for the body path. 319 
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 320 

 321 

Figure 9.  Convergence of the objective function for the prostate B case with 15 beams selected from 110 322 

candidate beams.  In this run, 100 individuals in 100 generations are used.  The boxes represent the median and 323 

the 25
th

 and 75
th

 percentiles of the 100 individual objective function values at each generation.  The error bars 324 

represent the range of these 100 objective values.  The green dotted line shows the objective value for the preset 325 

short path and the blue dashed line shows the objective value for the body path. 326 

 327 

 328 

 329 

 330 

The impact of the parameters used in the evolutionary algorithm on the median final objective 331 

value for the BOS result in the liver case is shown in Table 4.  As with the prostate B case, the 332 

standard run (run 1), is shown to produce final objective values which are competitive with the other 333 

runs.  The difference in magnitude of the objective function values, compared to the prostate B case, 334 

is a reflection of the different anatomical structures and importance factors used for the two cases, and 335 

comparison of these values between the cases is therefore not meaningful.  Figure 10 shows the 336 

objective values for 20 iterations of the BOS scheme for the liver case, corresponding to run 1 of 337 

Table 4.  The optimisation rapidly reaches convergence to a fit population of treatment plans.  The 338 

final objective value is better than that of the preset short path and approaching that of the body path.  339 

Figure 11 shows the results of the evolutionary algorithm for the same case when the BOS scheme is 340 

repeated 25 times (run 6).  Again, the small range of the median objective function values shows that 341 

the algorithm is statistically stable. 342 
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Table 4.  Impact of varying the parameters of the evolutionary algorithm in the liver case.  The 343 

pertinent changes in parameter values are shown in bold type.  Note that the median and range final objective 344 

values for run 6 relate to the median value attained by the population at each of multiple runs rather than the 345 

value attained by the individuals at a single run. 346 

 347 

PARAMETER RUN 1 RUN 2 RUN 3 RUN 4 RUN 5 RUN 6 

Population size (plans) 20 20 20 20 20 20 

Generations 20 20 20 20 20 20 

Statistical repeats 1 1 1 1 1 25 

Crossover ratio 0.4 0.3 0.5 0.4 0.4 0.4 

Mutation probability 0.05 0.05 0.05 0.01 0.1 0.05 

Final objective median 16.8 17.7 19.3 15.1 18.9 16.7 

Final objective range 12.9-28.3 14.6-28.2 14.0-25.8 13.1-18.0 14.7-27.1 13.3-18.8 

Lowest objective found 12.9 14.0 14.0 13.0 11.9 11.0 

 348 

 349 

 350 

 351 

 352 

Figure 10.  Convergence of the objective function for the liver case with 15 beams selected from 110 candidate 353 

beams.  The boxes represent the median and the 25
th

 and 75
th
 percentiles of the 20 individual objective function 354 

values at each generation.  The error bars represent the range of these 20 objective values.  The green dotted line 355 

shows the objective value for the preset short path and the blue dashed line shows the objective value for the 356 

body path. 357 
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 358 

Figure 11.  Statistical performance of the evolutionary algorithm for the liver case.  The algorithm has been run 359 

25 times and the median objective value of the population of 20 individuals recorded for each run.  The boxes 360 

represent the median and the 25
th

 and 75
th

 percentiles of the 25 median objective function values at each 361 

generation.  The error bars represent the range of these 25 median objective values.  The green dotted line shows 362 

the objective value for the preset short path and the blue dashed line shows the objective value for the body path. 363 

 364 

 365 

In terms of the clinical quality of the treatment plans, the clinical constraints are met in most 366 

cases where a solution is feasible.  There are several cases, notably prostate PTV overlapping the 367 

rectum, and lung PTV overlapping with the proximal bronchial tree, where a solution is infeasible for 368 

certain beam arrangements.  In addition, there are several other instances where the constraints are not 369 

met due to the PTV overlapping with a critical structure, which is difficult to handle due to the 370 

requirement in the computational framework to have only one structure defined at each location (see 371 

figure 1).  The PTV is always set to the highest priority, so it is difficult to control the dose in the 372 

regions where a critical structure overlaps with the PTV.  However, in general, clinical constraints are 373 

met in the cases presented. 374 

Dose-volume histograms comparing the body path, the preset short path and the BOS path are 375 

shown in Figure 12.  For the prostate A case, the PTV receives a similar dose with the body path, the 376 

preset short path and the BOS path.  The rectal dose passes the 18.12 Gy at 50% volume constraint 377 

with the full path and the BOS path but fails with the preset short path.  Meanwhile the bladder dose is 378 

lower with BOS than with the body path and the femoral head dose is higher than with the body path.  379 

However, these doses are within tolerance (principally 18.12 Gy at 50% for the bladder and 20 Gy 380 

maximum dose for the femoral heads) for all of the techniques. 381 

For the prostate B case, the PTV dose for the preset short path is similar to that for the body 382 

path, while the dose with BOS is slightly less, which in the context of this brachtherapy-like boost 383 



 

 

18 

protocol, represents a reduction in plan quality.  However, all techniques give PTV dose which meets 384 

the constraints (at least 38.00 Gy at 95%, at least 47.50 Gy at 50% and at least 57.00 Gy at 15%).  The 385 

urethra dose is similar with all techniques and within the tolerance of 39.90 Gy at 50%.  Rectum dose 386 

is slightly higher with BOS than with the body path or the preset short path, but again within tolerance 387 

(principally 28.50 Gy at 2 cm
3
) for all techniques. 388 

For the lung case, the plan with the preset short path is slightly lower in quality than the plan 389 

with the body path, and the plan with BOS is slightly lower in quality still, particularly in terms of 390 

proximal bronchus and oesophagus dose, but this is a very minor effect.  All dose constraints are met, 391 

except for the proximal bronchus (18.00 Gy at 4 cm
3
), which is not met by any of the three plans, due 392 

to overlap with the PTV. 393 

For the liver case, there is little difference dosimetrically between the three types of plan 394 

shown in the DVHs.  The PTVconstraints (principally 42.75 Gy at 95%) and the normal liver 395 

constraints (principally 15 Gy at 50%) are met by all plans.  Similarly, with the partial breast case, the 396 

techniques are dosimetrically very similar and meet the PTV constraint (35.00 Gy at 95%) and the 397 

constraint on the whole ipsilateral breast (17.50 Gy at 40%). 398 

 399 
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 400 

 401 

Figure 12.  Dose-volume histograms for (a) prostate A, (b) prostate B, (c) lung, (d) liver and (e) partial breast 402 

cases.  Dotted lines: body path (110 nodes), dashed lines: preset short path (36 nodes), solid lines: BOS path (15 403 

nodes).  The principal dose constraints are shown as points.  The PTV constraints in (b) are all minimum dose 404 

constraints. 405 

 406 

407 
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4.  Discussion 408 

These results show that our fast optimisation scheme is able to produce plans of a clinical 409 

standard for predefined beam arrangements such as the body path and the preset short path, within a 410 

very practical timeframe.  Both the treatment time and the treatment planning time can be reduced 411 

significantly by using a preset short path, as both are approximately proportional to the number of 412 

beams.  The benefit of this type of approach has been shown by a study of standardized beam 413 

bouquets for lung planning [36].  The treatment plans in that study contain around six coplanar beams, 414 

whereas 36 non-coplanar beams are used in the present study, but the similarity in outcome is clear: 415 

carefully chosen standardized beams can produce good quality treatment plans. 416 

However, the greatest benefit in treatment time is expected to be achieved with a BOS path.  417 

In this case, as few as 15 beams can be used for the treatment, with plan quality which is almost as 418 

high as with the 110-node body path.  The BOS path has the shortest treatment time, although as there 419 

are similar monitor units and number of apertures for the BOS path compared to the preset short path, 420 

the beam-on time and the aperture reshaping times are similar for both paths, and the reduction in 421 

treatment time with the BOS path is due to the reduction in robot traversal time.  The treatment 422 

planning time is much longer with this BOS algorithm, but there are a number of adjustments to the 423 

method which would enable it to be used in a much shorter time in a clinical environment, such as 424 

limiting the number of iterations for the optimisation at each fixed beam arrangement, and limiting the 425 

low-dose extent of the dij matrices.  Furthermore, it may be possible to use the information gained 426 

from this study to design better class solutions without requiring the BOS algorithm to be run for each 427 

patient in the clinical environment. 428 

The results of this study are similar to those of Rossi et al. [3] for Cyberknife treatment of 429 

prostate with a brachytherapy-like SABR protocol.  That study investigates candidate beam sets 430 

consisting of a full body path, a coplanar path and three extended body paths consisting of 180 – 500 431 

nodes.  Between 10 and 30 nodes are then selected from these node sets.  They find that selecting 432 

beams from the largest set of candidate directions favours plan quality.  In their study, increasing the 433 

number of selected beams from 10 to 30 has little effect on PTV coverage due to the design of the 434 

study, but gradually improves the mean dose to the bladder and the irradiated volume of urethra.  The 435 

impact of increasing the beam number levels off between 15 and 20 beams.  The mean dose to the 436 

rectum and the rectal irradiated volume also decrease with increasing number of beams, with most of 437 

the effect seen with beam numbers up to 20.  The finding of the present study that around 15 beams is 438 

sufficient to produce good quality plans is in accord with these results.  Rossi et al. [3] report 439 

optimisation times of up to 45 h, whereas the present work allows an optimisation time of an order of 440 

magnitude shorter. 441 
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Much of the experience with a C-arm linear accelerator can also be compared with the present 442 

study, such as the work of Woudstra et al. [4], Vaitheeswaran et al. [19], Breedveld et al. [8], Amit et 443 

al. [20] and Bangert and Unkelbach [23].  Most recently, Liu et al. [21] report on selecting eight 444 

beams from either 18 coplanar or 56 non-coplanar candidate orientations for prostate, head and neck, 445 

or liver.  They find that a sparse optimisation which approximates the exact BOS problem, thereby 446 

allowing the use of a gradient method, can provide good quality plans with improved computational 447 

efficiency. 448 

To produce such high-quality treatment plans, a series of annular structures around the PTV 449 

have been used in the present study.  These provide dose distributions evenly balanced around the 450 

area treated.  The biggest challenge in producing non-coplanar plans with few beams by orientation 451 

selection is to ensure that the surface dose is distributed around sufficiently.  It has been found that 15 452 

beams are sufficient for this, with 20 beams more than adequate.  However, there are some practical 453 

limitations to this study.  In particular, the method of sequencing the fluence profiles into deliverable 454 

segments [34] yields many small segments, with the effect that the total monitor units required are 455 

very high.  This effect could be overcome by using a more conformal segmentation algorithm.  456 

Moreover, no attempt has been made to optimize the monitor units as part of the objective function, 457 

but this should be possible.  Another limitation is that dose components have been calculated from a 458 

small field and the total dose due to a larger field has been calculated as a summation of these 459 

elemental doses.  It is well known that this is not a very accurate method of calculating the dose in a 460 

large field.  This could possibly be overcome by applying a segment weight optimisation in a post 461 

processing step. 462 

This study begins with candidate beam orientations chosen to avoid collisions.  This is similar 463 

to the work of Breedveld et al. [8] and Bangert et al. [25].  The present study uses an evolutionary 464 

algorithm to select beam orientations, with a fluence optimisation, segmentation and aperture 465 

optimisation for each plan at each iteration.  However, use of fluence optimisation and aperture 466 

optimisation at each iteration may ultimately not be necessary, as fluence optimisation alone may give 467 

the required result.  As the aperture optimisation problem is posed in this work as a special case of 468 

fluence optimisation, so that its speed of execution is approximately the same as the speed of fluence 469 

optimisation, removing the aperture optimisation would have the effect of reducing the optimisation 470 

time by approximately half.  This is also the approach taken by Rowbottom et al. [39] and Hou et al. 471 

[38].  Further work is needed to establish what simplifications of the inverse planning can be achieved 472 

for the same quality of plan. 473 

 474 

 475 

 476 
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5.  Conclusion 477 

The gradient descent method implemented in a multiple-core computation environment offers 478 

the possibility of fast optimisation for MLC-based delivery on the large number of nodes encountered 479 

in the Cyberknife system.  The number of delivery nodes can be reduced by using a preset short path, 480 

but the greatest time saving is achieved by beam orientation selection.  The beam selection method 481 

takes much longer to run than the standard optimisation method using a fixed set of nodes.  However, 482 

evolutionary computing produces results which are almost as good in quality as those using the body 483 

path.  The main advantage of the fewer nodes is expected to be a reduction in treatment time. 484 

 485 

Acknowledgments 486 

The authors would like to thank Accuray Inc. for funding this work.  This paper represents 487 

independent research part funded by the National Institute for Health Research (NIHR) Biomedical 488 

Research Centre at the Royal Marsden NHS Foundation Trust and the Institute of Cancer Research. 489 

The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the 490 

Department of Health.  Research at The Institute of Cancer Research is also supported by Cancer 491 

Research UK under Program No. C33589/A19727. 492 

This study was retrospective, using patient images, for the use of which informed consent was 493 

given.  This was in accord with the procedures at The Institute of Cancer Research and The Royal 494 

Marsden NHS Foundation Trust. 495 

 496 

 497 

References 498 

[1] Asmerom G, Bourne D, Chappelow J, Goggin LM, Heitz R, Jordan P, Kilby W, Laing T, 499 

Maurer CR Jr, Noll JM, Sayeh S, Weber A.  The design and physical characterization of a multileaf 500 

collimator for robotic radiosurgery.  Biomed Phys Eng Express 2016;2:017003. 501 

[2] Francescon P, Kilby W, Noll JM, Masi L, Satariano N, Russo S.  Monte Carlo simulated 502 

corrections for beam commissioning measurements with circular and MLC shaped fields on the 503 

CyberKnife M6 System: a study including diode, microchamber, point scintillator, and synthetic 504 

microdiamond detectors.  Phys Med Biol 2017;62:1076-95. 505 

[3] Rossi L, Breedveld S, Heijmen BJM, Voet PWJ, Lanconelli N, Aluwini S.  On the beam 506 

direction search space in computerized non-coplanar beam angle optimization for IMRT—prostate 507 

SBRT.  Phys Med Biol 2012;57:5441-58. 508 

[4] Woudstra E, Heijmen BJM, Storchi PRM.  A comparison of an algorithm for automated 509 

sequential beam orientation selection (Cycle) with simulated annealing.  Phys Med Biol 510 

2008;53:2003-18. 511 



 

 

23 

[5] Pugachev A, Xing L.  Computer-assisted selection of coplanar beam orientations in intensity 512 

modulated radiation therapy.  Phys Med Biol 2001;46:2467-76. 513 

[6] Potrebko PS, McCurdy BMC, Butler JB, El-Gubtan AS.  Improving intensity-modulated 514 

radiation therapy using the anatomic beam orientation optimization algorithm.  Med Phys 515 

2008;35:2170-9. 516 

[7] Zhang HH, Gao S, Chen W, Shi L, D’Souza WD, Meyer RR.  A surrogate-based 517 

metaheuristic global search method for beam angle selection in radiation treatment planning.  Phys 518 

Med Biol 2013;58:1933-46. 519 

[8] Breedveld S, Storchi PRM, Voet PWJ, Heijmen BJM.  iCycle: Integrated, multicriterial beam 520 

angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans.  Med Phys 521 

2012;39:951-63. 522 

[9] Voet PWJ, Breedveld S, Dirkx MLP, Levendag PC, Heijmen BJM.  Integrated multicriterial 523 

optimization of beam angles and intensity profiles for coplanar and noncoplanar head and neck IMRT 524 

and implications for VMAT.  Med Phys 2012;39:4858-65. 525 

[10] Popple RA, Brezovich IA, Fiveash JB.  Beam geometry selection using sequential beam 526 

addition.  Med Phys 2014;41:051713. 527 

[11] Rowbottom CG, Oldham M, Webb S.  Constrained customization of non-coplanar beam 528 

orientations in radiotherapy of brain tumours.  Phys Med Biol 1999;44:383-99. 529 

[12] Bedford JL, Webb S.  Direct-aperture optimization applied to selection of beam orientations 530 

in intensity-modulated radiation therapy.  Phys Med Biol 2007;52:479-98. 531 

[13] Djajaputra D, Wu Q, Wu Y, Mohan R.  Algorithm and performance of a clinical IMRT beam-532 

angle optimization system.  Phys Med Biol 2003;48:3191-212. 533 

[14] Bangert M, Oelfke U.  Spherical cluster analysis for beam angle optimization in intensity-534 

modulated radiation therapy treatment planning.  Phys Med Biol 2010;55:6023-37. 535 

[15] Rowbottom CG, Webb S, Oldham M.  Beam-orientation customization using an artificial 536 

neural network.  Phys Med Biol 1999;44:2251-62. 537 

[16] Yang R, Dai J, Yang Y, Hu Y.  Beam orientation optimization for intensity-modulated 538 

radiation therapy using mixed integer programming.  Phys Med Biol 2006;51:3653-66. 539 

[17] Jia X, Men C, Lou Y, Jiang SB.  Beam orientation optimization for intensity modulated 540 

radiation therapy using adaptive l2,1-minimization.  Phys Med Biol 2011;56:6205-22. 541 

[18] Schreibmann E, Lahanas M, Xing L, Baltas D.  Multiobjective evolutionary optimization of 542 

the number of beams, their orientations and weights for intensity-modulated radiation therapy.  Phys 543 

Med Biol 2004;49:747-70. 544 



 

 

24 

[19] Vaitheeswaran R, Narayanan VKS, Bhangle JR, Nirhali A, Kumar N, Basu S, Maiya V.  An 545 

algorithm for fast beam angle selection in intensity modulated radiotherapy.  Med Phys 546 

2010;37:6443-52. 547 

[20] Amit G, Purdie TG, Levinshtein A, Hope AJ, Lindsay P, Marshall A, Jaffray DA, Pekar V.  548 

Automatic learning-based beam angle selection for thoracic IMRT.  Med Phys 2015;42:1992-2005. 549 

[21] Liu H, Dong P, Xing L.  A new sparse optimization scheme for simultaneous beam angle and 550 

fluence map optimization in radiotherapy planning.  Phys Med Biol 2017;62:6428-45. 551 

[22] Bangert M, Ziegenhein P, Oelfke U.  Ultra-fast fluence optimization for beam angle selection 552 

algorithms.  J Phys: Conference Series 2014;489:012044. 553 

[23] Bangert M, Unkelbach J.  Accelerated iterative beam angle selection in IMRT.  Med Phys 554 

2016;43:1073-82. 555 

[24] Bangert M, Ziegenhein P, Oelfke U.  Characterizing the combinatorial beam angle selection 556 

problem.  Phys Med Biol 2012;57:6707-23. 557 

[25] Bangert M, Ziegenhein P, Oelfke U.  Comparison of beam angle selection strategies for 558 

intracranial IMRT.  Med Phys 2013;40:011716. 559 

[26] Smyth G, Bamber JC, Evans PM, Bedford JL.  Trajectory optimization for dynamic couch 560 

rotation during volumetric modulated arc radiotherapy.  Phys Med Biol 2013;58:8163-77. 561 

[27] Smyth G, Evans PM, Bamber JC, Mandeville HC, Welsh LC, Saran FH, Bedford JL.  Non-562 

coplanr trajectories to improve organ at risk sparing in volumetric modulated arc therapy for primary 563 

brain tumors.  Radiother Oncol 2016;121:124-31. 564 

[28] Wild E, Bangert M, Nill S, Oelfke U.  Noncoplanar VMAT for nasopharyngeal tumors: Plan 565 

quality versus treatment time. Med Phys 2015;42:2157-68. 566 

[29] Locke CB, Bush KK.  Trajectory optimization in radiotherapy using sectioning (TORUS).  567 

Med Phys 2017;44:3375-92. 568 

[30] Kearney V, Cheung JP, McGuinness C, Solberg TD.  CyberArc: a non-coplanar-arc 569 

optimization algorithm for CyberKnife.  Phys Med Biol 2017;62:5777-89. 570 

[31] Fuller DB, Naitoh J, Lee C, Hardy S, Jin H.  Virtual HDR Cyberknife treatment for localized 571 

prostatic carcinoma: dosimetry comparison with HDR brachytherapy and preliminary clinical 572 

observations.  Int J Radiat Oncol Biol Phys 2008;70:1588-97. 573 

[32] Fuller DB, Naitoh J, Mardirossian G.  Virtual HDR CyberKnife SBRT for localized prostatic 574 

carcinoma: 5-year disease-free survival and toxicity observations.  Front Oncol 2014;321:1-7. 575 

[33] Vautravers-Dewas C, Dewas S, Bonodeau F, Adenis A, Lacornerie T, Penel N, Lartigau E, 576 

Mirabel X.  Image-guided robotic stereotactic body radiation therapy for liver metastases: is there a 577 

dose response relationship?  Int J Radiat Oncol Biol Phys 2011;81:e39-e47. 578 



 

 

25 

[34] Xia P, Verhey LJ.  Multileaf collimator leaf sequencing algorithm for intensity modulated 579 

beams with multiple static segments.  Med Phys 1998;25:1424-34. 580 

[35] Ziegenhein P, Kamerling CP, Bangert M, Kunkel J, Oelfke U.  Performance-optimized 581 

clinical IMRT planning on modern CPUs.  Phys Med Biol 2013;58:3705-15. 582 

[36] Yuan L, Wu QJ, Yin F, Li Y, Sheng Y, Kelsey CR, Ge Y.  Standardized beam bouquets for 583 

lung IMRT planning.  Phys Med Biol 2015;60:1831-43. 584 

[37] Li Y, Yao J, Yao D.  Automatic beam angle selection in IMRT planning using genetic 585 

algorithm.  Phys Med Biol 2004;49:1915-32. 586 

[38] Hou Q, Wang J, Chen Y, Galvin JM.  Beam orientation optimization for IMRT by a hybrid 587 

method of the genetic algorithm and the simulated dynamics.  Med Phys 2003;30:2360-7. 588 

[39] Rowbottom CG, Nutting CM, Webb S.  Beam-orientation optimization of intensity-589 

modulated radiotherapy: Clinical application to parotid gland tumours.  Radiother Oncol 590 

2001;59:169-77. 591 


