72 research outputs found

    Use of Regression Analysis to Determine the Model of Lighting Control in Smart Home with Implementation of KNX Technology

    Get PDF
    To optimize the management of operational and technical functions in the smart home (SH) and for use of effective methods of energy management in SH, it is generally necessary to provide statistics and process relevant data from operational measurement devices. This chapter describes the use of modern methods for statistical data processing using regression analysis techniques. The aim of the analysis is to describe the dependence of single measured values using an appropriate mathematical model that can be efficiently implemented in the control system of SH. This model can be used for the functions of supervision and diagnostics of optimum comfort setting inside the indoor environment of SH. Real experimental measurements of objective parameters of the indoor environment were realized in the selected rooms of unique wooden building in the passive standard. The researched methods were experimentally verified by classifying the behavior of lighting in the SH-selected rooms under specified conditions. The achieved experimental results will be used for the operating and technical functions control in SH for reducing the building operating costs

    Comparison of Properties of Concretes with Different Types and Dosages of Fibers

    Get PDF
    Concretes with PP fibers 12 mm, construction polymer fibers 25 mm, 3D steel fibers 25 mm, and steel microfibers 12 mm were prepared in dosages 0.5 and 1%. The mechanical properties (compressive strength, bending strength, fracture properties, and modulus elasticity) and the frost resistance of these concretes were tested and they are discussed. The behavior of these concretes is also discussed using graphs load vs. deflection. As bad results of frost resistance are sometimes recorded for concrete with fibers, this property is also evaluated. As was expected, mechanical properties are enhanced with the addition of suitable fibers. Frost resistance is usually comparative with concrete without fibers, but in the case of concrete with 1% of steel fibers, it is reduced

    Enhancement of CASSI by a zero-order image employing a single detector

    Full text link
    Coded aperture snapshot spectral imaging (CASSI) makes it possible to recover 3D hyperspectral data from a single 2D image. However, the reconstruction problem is severely underdetermined and efforts to improve the compression ratio typically make the imaging system more complex and cause a significant loss of incoming light intensity. In this paper, we propose a novel approach to CASSI which enables capturing both spectrally sheared and integrated image of a scene with a single camera. We performed hyperspectral imaging of three different testing scenes in the spectral range of 500-900 nm. We demonstrate the prominent effect of using the non-diffracted image on the reconstruction of data from our camera. The use of the spectrally integrated image improves the reconstruction quality and we observed an approx. fivefold reduction in reconstruction time

    Differential Coded Aperture Single-Snapshot Spectral Imaging

    Full text link
    We propose a novel concept of differential coded aperture snapshot spectral imaging (D-CASSI) technique exploiting the benefits of using {-1,+1} random mask, which is demonstrated by a broadband single-snapshot hyperspectral camera using compressed sensing. To double the information, we encode the image by two complementary random masks, which proved to be superior to two independent patterns. We utilize dispersed and non-dispersed encoded images captured in parallel onto a single detector. We explored several different approaches to processing the measured data, which demonstrates significant improvement in retrieving complex hyperspectral scenes. The experiments were completed by simulations in order to quantify the reconstruction fidelity. The concept of differential CASSI could be easily implemented also by multi-snapshot CASSI without any need for optical system modification

    Parallel Iteration Method for Frequency Estimation Using Trigonometric Decomposition

    Get PDF
    The parallel iteration method for frequency estimation based on trigonometric decomposition is presented. First, the multi-frequency signal can be expressed in a matrix form based on the trigonometric decomposition, which implies a possibility to solve the nonlinear mapping functions of frequency estimation by a parallel iteration procedure. Then, frequency estimation with the minimized square errors is achieved by using the gradient-descent method in the parallel iteration procedure, which can effectively restrain the interferences from harmonics and noise. Finally, the workflow is shown, and the efficiency of the proposed method was demonstrated through computer simulations and experiments

    Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography

    Get PDF
    The abdominal fetal electrocardiogram (fECG) conveys valuable information that can aid clinicians with the diagnosis and monitoring of a potentially at risk fetus during pregnancy and in childbirth. This chapter primarily focuses on noninvasive (external and indirect) transabdominal fECG monitoring. Even though it is the preferred monitoring method, unlike its classical invasive (internal and direct) counterpart (transvaginal monitoring), it may be contaminated by a variety of undesirable signals that deteriorate its quality and reduce its value in reliable detection of hypoxic conditions in the fetus. A stronger maternal electrocardiogram (the mECG signal) along with technical and biological artifacts constitutes the main interfering signal components that diminish the diagnostic quality of the transabdominal fECG recordings. Currently, transabdominal fECG monitoring relies solely on the determination of the fetus’ pulse or heart rate (FHR) by detecting RR intervals and does not take into account the morphology and duration of the fECG waves (P, QRS, T), intervals, and segments, which collectively convey very useful diagnostic information in adult cardiology. The main reason for the exclusion of these valuable pieces of information in the determination of the fetus’ status from clinical practice is the fact that there are no sufficiently reliable and well-proven techniques for accurate extraction of fECG signals and robust derivation of these informative features. To address this shortcoming in fetal cardiology, we focus on adaptive signal processing methods and pay particular attention to nonlinear approaches that carry great promise in improving the quality of transabdominal fECG monitoring and consequently impacting fetal cardiology in clinical practice. Our investigation and experimental results by using clinical-quality synthetic data generated by our novel fECG signal generator suggest that adaptive neuro-fuzzy inference systems could produce a significant advancement in fetal monitoring during pregnancy and childbirth. The possibility of using a single device to leverage two advanced methods of fetal monitoring, namely noninvasive cardiotocography (CTG) and ST segment analysis (STAN) simultaneously, to detect fetal hypoxic conditions is very promising

    A multidisciplinary engineering summer school in an industrial setting

    Get PDF
    Most university-level engineering studies produce technically skilled engineers. However, typically students face several difficulties whenworking in multidisciplinary teams when they initiate their industrial careers. In a globalised world, it becomes increasingly important that engineers are capable of collaborating across disciplinary boundaries and exhibit soft competencies, like communication, interpersonal and social skills, time planning, creativity, initiative, and reflection. To prepare a group of engineering and industrial design students to acquire those capabilities, an international summer school that combined industrial design with different kinds of engineering disciplineswas organised on the site of Bang&Olufsen (B&O) in Denmark. This multidisciplinary engineering summer school was attended by students from six European university-level teaching institutions and was supervised by teachers from those institutions and industrial experts from B&O. The main aim of the summer school was to allow students to work in teams, composed of students from different knowledge disciplines and with different cultural backgrounds, with the purpose of developing innovative concepts and products, within a strong industrial perspective.B&OERASMU

    Reduced expression of C/EBPβ-LIP extends health- and lifespan in mice

    Get PDF
    Ageing is associated with physical decline and the development of age-related diseases such as metabolic disorders and cancer. Few conditions are known that attenuate the adverse effects of ageing, including calorie restriction (CR) and reduced signalling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Synthesis of the metabolic transcription factor C/EBPβ-LIP is stimulated by mTORC1, which critically depends on a short upstream open reading frame (uORF) in the Cebpb-mRNA. Here we describe that reduced C/EBPβ-LIP expression due to genetic ablation of the uORF delays the development of age-associated phenotypes in mice. Moreover, female C/EBPβΔuORF mice display an extended lifespan. Since LIP levels increase upon aging in wild type mice, our data reveal an important role for C/EBPβ in the aging process and suggest that restriction of LIP expression sustains health and fitness. Thus, therapeutic strategies targeting C/EBPβ-LIP may offer new possibilities to treat age-related diseases and to prolong healthspan
    • …
    corecore