26 research outputs found

    Current state of chitin purification and chitosan production from insects

    Get PDF
    Chitin, and especially its deacetylated variant chitosan, has many applications, e.g. as carrier material for pharmaceutical drugs or as a flocculant in wastewater treatment. Despite its versatility and accessibility, chitin, the second most abundant polysaccharide on Earth, has so far been commercially extracted only from crustaceans and to a minor extent from fungi. Insects are a viable alternative source of chitin, but they have not been exploited in the past due to limited availability. Today however, for the sustainable production of animal feed, insect farming is being developed substantially. The availability of large quantities of insect biomass and chitin-rich side products such as exuviae and exoskeletons has been increasing. This review provides an overview of recently published studies of chitin extraction from insects, its subsequent conversion into chitosan and the primary analytical methods used to characterize insect-based chitin and chitosan. We have discovered a large number of research articles published over the past 20 years, confirming the increased attention being received by chitin and chitosan production from insects. Despite numerous publications, we identified several knowledge gaps, such as a lack of data concerning chitin purification degree and chitosan yield. Furthermore, analytical methods used to obtain physicochemical characteristics, structural information and chemical composition meet basic qualitative requirements but do not satisfy the need for a more quantitative evaluation. Despite the current shortcomings that need to be overcome, this review presents encouraging data on the use of insects as an alternative source of chitin and chitosan in the future. © 2020 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI)

    Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens

    Get PDF
    Growing antimicrobial resistance has prompted researchers to identify new natural molecules with antimicrobial potential. In this perspective, attention has been focused on biopolymers that could also be functional in the medical field. Chitin is the second most abundant biopolymer on Earth and with its deacetylated derivative, chitosan, has several applications in biomedical and pharmaceutical fields. Currently, the main source of chitin is the crustacean exoskeleton, but the growing demand for these polymers on the market has led to search for alternative sources. Among these, insects, and in particular the bioconverter Hermetia illucens, is one of the most bred. Chitin can be extracted from larvae, pupal exuviae and dead adults of H. illucens, by applying chemical methods, and converted into chitosan. Fourier-transformed infrared spectroscopy confirmed the identity of the chitosan produced from H. illucens and its structural similarity to commercial polymer. Recently, studies showed that chitosan has intrinsic antimicrobial activity. This is the first research that investigated the antibacterial activity of chitosan produced from the three developmental stages of H. illucens through qualitative and quantitative analysis, agar diffusion tests and microdilution assays, respectively. Our results showed the antimicrobial capacity of chitosan of H. illucens, opening new perspectives for its use in the biological area

    Purification of Chitin from Pupal Exuviae of the Black Soldier Fly

    Get PDF
    Purpose: Chitin purification from remains (pupal exuviae after metamorphosis to adult flies) of Hermetia illucens farming was optimized performing demineralization, deproteinization and bleaching under different conditions. The optimal parameters to obtain high-purity chitin were determined. Methods: Dried and ground pupal exuviae, whose composition was initially determined, were demineralized using six different acids. Proteins were removed with a NaOH treatment in which temperature, molarity and duration were varied in a randomized experiment. Bleaching was carried out testing ten different chemicals, including NaOCl, H2O2, solvent mixtures and enzymes. The efficiency of each step was determined to assess the optimal conditions for each of them. The resulting chitin was subjected to spectroscopic characterization. Results: The highest demineralization efficiency (90%) was achieved using 0.5 M formic acid for 2 h at 40 °C, confirming the validity of organic acids as a more sustainable alternative to inorganic acids. The treatment with 1.25 M NaOH at 90 °C for 4 h showed the highest deproteinization efficiency, removing 96% of the proteins. Temperature and NaOH concentration were the significant parameters for deproteinization efficiency. The most efficient bleaching treatment was with 6% NaOCl at 60 °C for 1 h (67% efficiency). H2O2 could also be a valid alternative to avoid environmental risk related to chlorine-containing compounds. At the end of the purification process 17% of the original biomass was retained with a chitin content of 85%, corresponding to a chitin yield of 14% related to the initial biomass. Solid-state nuclear magnetic resonance showed that the purified chitin had a degree of acetylation of 96% and X-ray powder diffraction gave a crystallinity index of 74%. Conclusion: This investigation shows an optimized method for extraction of high-purity chitin from H. illucens pupal exuviae, supporting the validity of insect-farming remains as source of this versatile biopolymer. Graphical Abstract: [Figure not available: see fulltext.

    Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process

    Get PDF
    Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties

    Preliminary investigation on the effect of insect-based chitosan on preservation of coated fresh cherry tomatoes

    Get PDF
    : Chitosan was produced from Hermetia illucens pupal exuviae by heterogeneous and homogeneous deacetylation. Tomato fruits (Solanum lycopersicum), that are one of the most grown and consumed food throughout the world, were coated with 0.5 and 1% chitosan, applied by dipping or spraying, and stored at room temperature or 4 °C, for a storage period of 30 days. Statistical analysis give different results depending on the analysed parameters: heterogeneous chitosan, indeed, had a better effect than the homogenous one in maintaining more stable physico-chemical parameters, while the homogenous chitosan improved the total phenols, flavonoids and antioxidant activity. Chitosan coatings applied by spraying were more effective in all the analyses. Chitosan derived from H. illucens always performed similarly to the commercial chitosan. However, a general better performance of insect-derived chitosan on the concentration of phenolics and flavonoids, and the antioxidant activity was observed as compared to the commercial one. Chitosan coating has already been successfully used for preservation of fresh fruits, as alternative to synthetic polymers, but this is the first investigation of chitosan produced from an insect for this application. These preliminary results are encouraging regarding the validation of the insect H. illucens as a source of chitosan

    Fungal Glycolipids as Biosurfactants

    No full text
    Background: Fungi are key organisms in the biotechnological production of a plethora of products relevant for mankind. Recently several new products from fungi have entered the markets, including biosurfactants. Biosurfactants are microbial produced surface active compounds with emulsifying properties which proved to be an interesting alternative to petrochemically or palm oil derived surfactants. Methods: We have performed a review of the current literature on fungal surfactants and their application, focusing on MEL and CL variants and the microbial strains producing them. We have also included unpublished own findings to further add the newest perspectives for potential application of these biosurfactants. Results: The main fungal biosurfactants currently are generated by species from the order Saccharomycetales and Ustilaginales. These species produce a variety of glycolipids, including sophorolipids, mannosylerythritol lipids and cellobiose lipids. They have been described as promising microbial biosurfactants suitable for personal care, cosmetic, pharmaceutical or biomedical applications as well as in bioremediation technologies like solubilisation and removal of oil from contaminated soil, or in oil recovery. Some of these fungal biosurfactants are already included in cleaning agents and cosmetic products available commercially. The properties of surfactants can be modified by fermentation and feeding strategies as well as by selection of different strains or their genetic modification. By that tailor made surfactants for various applications can be designed. Conclusions: Although fungal surfactants provide a large portfolio of compounds with a performance equal or better than petrochemical derived surfactants and have shown their environmental advantages, commercialization of these molecules remains a challenge due to a higher price at the currently low production volume. More efficient production processes would support further introduction of these compounds into the market. In this review we have given a brief overview and positive resume of the currently available fungal surfactants focusing on MEL and CL, their derivatives and the biotechnological opportunities for their further commercialization

    Biotechnological synthesis of long-chain dicarboxylic acids as building blocks for polymers

    No full text
    An important field in sustainable industrial chemistry is the development of new applications for fats and oils. One of the promising applications is the use of fatty acid derivatives, e.g. dicarboxylic acid (DCA), as polymer building blocks. In contrast to conventional plastics, bioplastics are polymers derived from renewable biomass sources. In addition to their contribution to the conservation of fossil resources and reduction in CO2 emissions by waste incineration, many bioplastics are biodegradable. The majority of industrial DCA production for polyamide (PA) and polyester (PE) synthesis is still done via chemical synthesis. While short-chain DCA can be synthesized in high yields, costs of long-chain DCA production rise significantly due to the generation of various by-products and are connected mostly to a costly purification. Thus biotechnology provides novel biochemical approaches for long-chain DCA synthesis that can provide an eco-efficient process alternative . In the present article, strategies for the development of high-level production strains for long-chain DCA are illustrated. Basic strategies for strain development, in order to achieve an effective enrichment of DCA, require the knowledge of the respective biochemical pathways. These are discussed in detail. Furthermore an overview of fermentation strategies and characteristics of corresponding polymers is given
    corecore