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Abstract

Chitin, and especially its deacetylated variant chitosan, has many applications, e.g. as carrier material for pharmaceutical drugs
or as a flocculant in wastewater treatment. Despite its versatility and accessibility, chitin, the second most abundant polysac-
charide on Earth, has so far been commercially extracted only from crustaceans and to a minor extent from fungi. Insects are
a viable alternative source of chitin, but they have not been exploited in the past due to limited availability. Today however,
for the sustainable production of animal feed, insect farming is being developed substantially. The availability of large quan-
tities of insect biomass and chitin-rich side products such as exuviae and exoskeletons has been increasing. This review pro-
vides an overview of recently published studies of chitin extraction from insects, its subsequent conversion into chitosan
and the primary analytical methods used to characterize insect-based chitin and chitosan. We have discovered a large number
of research articles published over the past 20 years, confirming the increased attention being received by chitin and chitosan
production from insects. Despite numerous publications, we identified several knowledge gaps, such as a lack of data concern-
ing chitin purification degree and chitosan yield. Furthermore, analytical methods used to obtain physicochemical characteris-
tics, structural information and chemical composition meet basic qualitative requirements but do not satisfy the need for a
more quantitative evaluation. Despite the current shortcomings that need to be overcome, this review presents encouraging
data on the use of insects as an alternative source of chitin and chitosan in the future.
© 2020 The Authors. Journal of Chemical Technology and Biotechnology published by JohnWiley & Sons Ltd on behalf of Society
of Chemical Industry (SCI).

Keywords: chitin; chitosan; insects; purification; analysis

INTRODUCTION
Chitin is an important structural component of the cell wall of
fungi and yeasts and the main carbohydrate component of
arthropod exoskeletons.1 After cellulose, it is the second most
abundant biopolymer present in nature.2 The production of chitin
in the biosphere is estimated to be around 1000 billion (1011) tons
per year.3 Chitin was isolated for the first time in 1799 from the
shells of mollusks.4 Chitosan, the deacetylated derivative of chitin,
was obtained by Rouget in 1859 by heating chitin in alkaline
medium; however, its chemical structure was determined only
in 1950.5 Despite this early discovery, the industrial production
and commercialization of chitin and chitosan initially started in
the 1970s.6

Chitin is a hard, inelastic, N-acetylated aminopolysaccharide
(Fig. 1(a)) with high hydrophobicity, making it insoluble in water
and most organic solvents.7, 8 Fungi and invertebrates use these
properties and incorporate chitin microfibrils to protect and
strengthen their cell matrix or as components of mechanically
resilient structures such as shells, cuticles, bones (in cuttlefish)
and scaffolds (in sponges).9, 10

Based on various orientations of its microfibrils, chitin exists in
nature in three crystalline allomorphic forms: ⊍-, ⊎- and γ-chitin
(Fig. 1(b)). ⊍-Chitin has antiparallel chains. It is responsible for
the rigidity of the polymer and is the most abundant form.11

⊎-Chitin consists of parallel chains, producing monoclinic crystals
with intramolecular interactions (hydrogen bonds) in addition to
intermolecular ones.12 ⊎-Chitin is found in the spines of diatoms,
squid pens and pogonophoran tubes. γ-Chitin is a mixture of par-
allel and antiparallel chains combining the properties of both
⊍-form and ⊎-form13; it is present in fungi, yeasts and insect
cocoons.14–18

After being isolated from natural sources, direct application of
chitin is limited to a few applications, such as the production of
scaffolds to support tissue regeneration19 or for biological control
of plant pathogens in agriculture,20 which is due to its insolubility.
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To widen its range of applications, chitin needs to be converted to
more water-soluble derivatives with useful properties, primarily
chitosan. Chitosan (Fig. 1(a)) is a cationic polysaccharide obtained
from chitin by alkaline hydrolysis of the acetamido groups (deace-
tylation process). Due to an increased number of free primary
amine groups, and partially due to a lower molecular weight, chit-
osan is soluble in slightly acidic solutions. To define and distin-
guish between chitin and chitosan, several researchers have set
the threshold value of degree of acetylation to 50%: when the
N-acetyl group content of the polysaccharide exceeds 50%, the
polymer is defined as chitin; for values below 50%, it is called chit-
osan.21, 22

The physicochemical properties of chitin and chitosan may vary
among samples, being affected by many factors such as the
source of chitin and parameters of the purification process. Molec-
ular weight is an important characteristic to consider as it affects
chitosan viscosity23 that is crucial to many of its applications and
other important features such as antibacterial activity.24 Native
chitin from crustacean sources has a molecular weight exceeding
1000 kDa, while the molecular weight of crustacean-based chito-
san ranges from 100 to 1000 kDa.25, 26

Due to its useful properties, such as biodegradability, biocom-
patibility, nontoxicity, adsorption capacity and antimicrobial
activity,1, 17 chitosan is attracting great attention for many appli-
cations within the agricultural, industrial, biotechnological and
biomedical fields and in wastewater treatment.1, 8, 27–31

The antimicrobial activity of chitosan is one of its most exploited
properties. Chitosan can inhibit the growth of human pathogens,
such as Escherichia coli,32, 33 Staphylococcus aureus,34, 35 Pseudo-
monas aeruginosa36 and Aspergillus niger.37 Its antimicrobial activ-
ity makes chitosan suitable to be used not only in biomedical
applications but also as a natural biopolymer coating material to
preserve the quality and to extend the shelf-life of fresh food.38

Chitosan-based active films against contamination and microbial
spoilage have been successfully used in fruit, vegetable, egg
and meat packaging.39, 40

Chitosan has also shown excellent potential for wound dressing.
The potential of chitosan as a hemostatic topical dressing for ani-
mal tissues has previously been demonstrated: chitosan adheres
to red blood cells, thus retrieving platelets for hemagglutina-
tion.41 In cosmetics, chitosan finds application in the production
of creams and lotions. It is used as a moisturizing and UV-
protective agent for the skin.42 A further application for chitosan
is in wastewater treatment, where it is used as a flocculating agent
owing to its ability to chelate cations and adsorb waste molecules
from water, such as heavy metals.31, 43

Recently, chitosan has been proposed as an ecological finishing
agent in the textile industry. It is used in working fabrics for hospi-
tals or biological laboratories and for making sutures, threads and
fibers in medical textiles.44, 45 Chitosan is also used for antistatic
finishing in work wear for employees of the electronic sector.46

Three main chitin sources are available
Currently, the main commercial source of chitin and chitosan
comprises waste streams from the marine food industry –mainly
exoskeletons of crustaceans.47 Annual world production of crusta-
ceans for human consumption was an estimated 8 million tons in
2016,48 of which 40% comprised waste exoskeletons49 with a chi-
tin content of 15–40%.50 However, the availability of fishery waste
is highly seasonal, as commercial crustacean fishing starts in
spring, after the spawning season.51 Moreover, the sustainability
of crustacean farming is currently under debate.49

The global market for chitin and chitosan is expected to reach a
volume of $4.2 billion by 2021, with a compound annual growth
rate of 15.4%,52 intensifying the need for a search of other sources
to satisfy the growing market.
Fungi are the second main source of chitin after crustaceans.

Several research activities have focused on fungi and their com-
mercial value as they have attracted attention as an alternative
and vegan source of chitin and chitosan.53 Chitin makes up
between 1 and 15% of fungal cell wall mass54 and its structure is
comparable to that in crustaceans.55 Even though not all fungi

Figure 1. (a) Chitin and chitosan molecular structure. Chitin consists of N-acetylated-D-glucosamine (GlcNAc) and 2-amino-D-glucose (D-glucosamine,
GlcN) linked by ⊎-1,4 glycosidic bonds. Chitosan is the main deacetylated derivative of chitin. (b) Three crystalline allomorphic forms of chitin, with differ-
ent microfibril orientations.
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contain chitin, it is widely distributed in various fungal phyla such
as Basidiomycota, Ascomycota and Zygomycota.55 Similar to crus-
tacean chitin, severe conditions are required to obtain chitosan
from fungal chitin. In contrast, chitosan can be directly isolated
from the cell wall of some fungal species without requiring the
cleavage of the acetyl groups. Among them, the most investi-
gated species for direct chitosan production include Absidia spp.
(zygomycetes), A. niger (ascomycetes), Mucor rouxii (zygomy-
cetes), Rhizophus oryzae (zygomycetes) and Lentinus edodes
(basidiomycetes).56–59 Nevertheless, the production of fungal chi-
tin and chitosan has not yet been scaled up to the industrial
level.53

In addition to crustaceans and fungi, insects are another prom-
ising and sustainable source of chitin and chitosan, although they
have not received much attention previously. Insects present
some advantages compared to crustaceans, as they are not sub-
ject to seasonality, and can be easily bred owing to their high fer-
tility and reproductive rate; moreover, insect rearing facilities are
being launched worldwide.60 Notably, as bioconverters – reared
for organic waste management and animal feed production –
insects can be exploited as a valid alternative to crustaceans as a
source for chitin and chitosan for greater ecological and economic
sustainability.61

Arthropods, including centipedes62, 63 and woodlice,64, 65 have
been investigated as sources of chitin. Notably, the body seg-
ments of large centipedes are suitable for the production of
three-dimensional chitin rings.62 In addition, chitin has been
extracted from poriferans,66 bryozoans67 and tardigrades68 and
from guano of insectivorous bats.69

Quo vadis insect chitin?
Economic value linked to beneficial insects has been known to
humans for a long time. The commercial production of silk from
Bombyx mori originated in China during the Neolithic period.70

Humans have learned to farm several insect species and exploit
them for specific applications with the course of time. Production
of biocontrol insects started in the middle of the 20th century. For
example, mass production of Cochliomyia hominivorax for biocon-
trol started in Florida during the late 1950s.71 Organized, large-
scale production of insects for human and animal nutrition has
been more recent: Protix, a Dutch company, launched the first
facility in 2015.
Some industries in the domain of beneficial insect breeding are

witnessing rapid growth. For example, the market for edible
insects is estimated to exceed $522 million in 2023.72 According
to a report published in 2016, globally, more than 120 registered
companies are involved in the business of farming and processing
and/or marketing insects for animal and human nutrition.73 In
2019, approximately 6kt of insect protein meal was produced in
Europe74 to be used for animal nutrition, from the black soldier
fly (Hermetia illucens), the yellow mealworm (Tenebrio molitor)
and, to a smaller extent, the lesser mealworm (Alphitobius diaper-
inus).75 In particular, the black soldier fly is processed by around
80% of all EU insect-producing companies.75 H. illucens could be
grown on a wide range of organic side streams and contributes
to a circular economy.76, 77 Exoskeletons from H. illucens larvae
contain up to 35% chitin,78 which means that it is one of the main
compounds that could be isolated from the byproducts of the
insect farming industry.73

Thus, chitin-rich byproducts from insect farming present a new
and sustainable source of commercial chitin. Given the sustain-
ability aspect and the expected rise in insect production,

byproducts from insect farming present a very interesting source
of chitin for the future.
The inner soft tissues of insects are covered by a hard, protective

layer called the exoskeleton. The exoskeleton has several func-
tions in insect bodies, including but not limited to: (i) as a protec-
tive covering and (ii) as a facilitator of metamorphosis. The
exoskeleton is rich in chitin and is shed from the body during
metamorphosis.79 Chitin is contained in the procuticle, the inner-
most layer of the cuticle, which is in turn the outermost layer of
the arthropod exoskeleton.80, 81 In its native form, chitin is
arranged into microfibers embedded in a protein matrix.82 To
extract chitin from the arthropod cuticle, the purification process
remove proteins, lipids, minerals, pigments and catechols con-
tained therein.83 Whole insects generally contain 30–60% pro-
tein,84 10–25% lipid,84 5–25% chitin,50, 78, 85 5–10% catechols85

and 2–10% minerals such as calcium, phosphorus, potassium
and magnesium salts.84, 86

To date, little has been reported on the extraction methods for
insect chitin and its physicochemical properties. Here, a total of
52 papers reporting chitin purification and chitosan production
from 58 insect species were collected, summarized and analyzed
(Tables 1 and 2).

CHITIN PURIFICATION
Various types of chitin purification processes can be performed,
such as physical, biotechnological and chemical methods and a
combination of these. Physical techniques such as crushing and
stirring are used in parallel with chemicals or catalysts. Biotechno-
logical extraction and deacetylation of chitin has been gaining
interest as an environmentally friendly alternative to chemical
processes. The biotechnological methods are mainly based on
the use of microbial proteases or whole microorganisms for the
removal of proteins and the application of deacetylases for the
deacetylation of chitin. However, the biotechnological processes
developed so far produce lower yields, are time-consuming and
result in products of lower purity.83, 134 Notably, enzymatic deace-
tylation of chitin using deacetylases has proven to be unsuitable
for chitosan production.135, 136

Chemical processes, utilizing acidic and alkaline solutions, are
currently the most applied on an industrial scale to produce large
amounts of chitin and chitosan from crustacean shells134, 137

(Fig. 2). Typically, chemical treatment provides pure chitin and
chitosan, although it produces large volumes of waste due to
the high concentrations of chemicals used.134, 137, 138 The litera-
ture reviewed here describes only chemical methods for chitin
and chitosan production from insects.
Chemical methods for extracting chitin from insect exoskele-

tons are similar to those used for marine sources and consist of
two steps: demineralization and removal of proteins. In the first
step, minerals contained in the cuticle are removed with diluted
acids. Various mineral acids (e.g. hydrochloric acid) or organic
acids (e.g. acetic acid) can be used for this purpose. The removal
of proteins is carried out with alkaline treatments, mainly applying
diluted sodium hydroxide solution. Deproteinization treatment
can simultaneously extract part of the dyes and soluble lipids con-
tained in the exoskeleton. For prawn shells, two-step purification
can be performed in reverse order without affecting the proper-
ties of chitin.83

An additional step of bleaching can be performed to remove
residual pigments and improve the color of purified chitin, using

Chitosan production from insects www.soci.org
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reagents such as sodium hypochlorite, acetone and hydrogen
peroxide.
Prior to the chitin purification process, insect samples are gener-

ally pretreated. Pretreatments include cleaning by washing with
water and detergent, drying in an oven or at ambient temperature
and grinding into powder to increase accessibility to the chemical
agents. Solvent penetration into the particles and thus purifica-
tion efficiency are greatly affected by corn size. Kim et al.110

obtained a higher demineralization efficiency and chitosan with
a higher degree of deacetylation using ground insect samples
instead of non-ground ones. A particle size lower than
200–250 μm is suitable for chitin purification.90, 116, 117, 132 A fat
removal step may be required, especially for those insect samples
rich in lipids, such as whole larvae. Larvae can be boiled and
passed through an extruder or an oil press to separate unpurified
chitin from the liquid fraction, containing mainly lipids and some
proteins.93, 109

Demineralization
Crustacean shells contain a substantial amount of minerals, which
can be up to 50% in crab and shrimp shells.50 In contrast, insects
have a much lower mineral content, generally ranging between
2 and 10% for whole insects. However, this value varies depend-
ing on the species and the stage of development.84, 86

The demineralization of insect samples comprises the decom-
position of minerals into their respective water-soluble salts. The
solubilized salts can be separated from chitin by filtration and
washing of the solid phase. Acidic treatment also releases cate-
chol compounds and leads to a slight discoloration of biomass.115

The demineralization process can be affected by the type and
concentration of acid used, treatment time and temperature, par-
ticle size of the sample and the solute-to-solvent ratio.139

Hydrochloric acid is the most preferred reagent used for the
demineralization of insect exoskeletons (Table 1). Hydrochloric
acid has also been one of the most widely used acids for the
demineralization of crustacean shells on an industrial scale.134

Because of its high environmental impact, hydrochloric acid has
been substituted in many cases by organic acids. Furthermore,
hydrochloric acid can have detrimental effects on the structure
and chemical composition of chitin,140 as has been confirmed
by investigations of Percot et al.,141 who reported a lower molec-
ular weight and a lower degree of acetylation of chitin after
demineralization. As a rule of thumb, the harsher the deminerali-
zation treatment – in terms of pH, duration and temperature – the
higher is the degree of hydrolysis and the worse are the afore-
mentioned effects on chitin.142

In contrast to the frequently used hydrochloric acid, only four
investigations have reported the use of organic acids for the
demineralization of insect biomass. Ibitoye et al.94 and Song
et al.124 used oxalic acid and Badawy and Mohamed88 and Hahn
et al.92 used acetic acid and formic acid, respectively.
In most cases, the concentration of the acidic solution used for

demineralization is 1–2 mol L−1. Few papers have reported the
application of a higher concentration of 4 mol L−1.13, 64, 98 The
solute-to-solvent ratio depends on the acid concentration, as it
needs two molecules of hydrochloric acid to convert one mole-
cule of calcium carbonate, the main mineral component of the
insect exoskeleton, into calcium chloride, carbon dioxide and
water.143

The time taken for demineralization treatment is usually short.
Most protocols have reported an incubation time between 30 min
and 3 h. In a few cases, the treatment lasted for up to 6 h,99, 103

12 h114 and 24 h.101, 123, 144 The range of temperature used for
demineralization varies widely from room temperature to 100 °
C. High temperatures are used for very short periods (20–30 min),
as reported by Kaya et al.100 and Monter-Miranda et al.119 In con-
trast, longer treatment periods (12–24 h) are applied for incuba-
tions done at room temperature.106, 114, 123 High temperatures
promote the penetration of the solvent into the chitin matrix145;
however, they can cause polymer degradation.25

The efficiency of demineralization (DME) can be evaluated by
assessing the mineral content of insect samples before (MCBT)
and after treatment (MCAT) according to the following equation:

DME %ð Þ= MCBT %ð Þ−MCAT %ð Þ
MCBT %ð Þ ×100 ð1Þ

From the scanty data available in the literature on the efficiency
of the demineralization of insect biomass, we can observe that the
highest efficiency (86–98%) was achieved by Zhou et al.,133 using
natural deep eutectic solvents onH. illucens prepupae (Table 1). Of
the organic acids used, oxalic acid, used by Ibitoye et al.,94 resulted
in a higher degree of demineralization compared to that reported
by Kim et al.110,111 with hydrochloric acid, although a lower con-
centration of oxalic acid had been used. Demineralization effi-
ciency for the H. illucens larval exoskeleton, reported by Hahn
et al.,92 was similar to that obtained by Ibitoye et al.,94 using formic
acid. However, additional data on the efficiency of insect deminer-
alization are not available. Thus, future studies should focus on
assessing the suitability and optimization of the current methods.
Precise evaluation of the efficiency of various acids will enable
choosing acids with a lower environmental impact but guarantee
good demineralization. For instance, Mahmoud et al.140 and
Ameh et al.146 have reported that the efficiency of demineraliza-
tion of shrimp shells using lactic or acetic acids is comparable to
that obtained using hydrochloric acid. Values of demineralization
efficiency for shrimp shells, using either hydrochloric acid or
acetic and lactic acid, as reported byMahmoud et al.,140 are similar
to those obtained by Ibitoye et al.94 with oxalic acid using insect
samples. Organic acids, namely lactic, acetic and oxalic acids,
can therefore be a valid alternative to hydrochloric acid for the
demineralization of insect biomass. The utilization of organic
acids also provides other benefits as they are less harmful to the
environment, can preserve the characteristics of purified chitin,
can be produced from low-cost biomass and the extracted
organic salts can be used for other applications.140

Once the minerals have been solubilized and removed, the
insect biomass is washed with distilled water until its pH is
restored to neutral. After the neutralization step, insect samples
are subjected to deproteinization.

Protein removal
Deproteinization of insect biomass is commonly achieved using
alkaline solutions. A wide range of chemicals has been tested as
deproteinization reagents with crustacean samples, including
sodium hydroxide, sodium carbonate, sodium bicarbonate, potas-
sium hydroxide, potassium carbonate, calcium hydroxide, sodium
sulfite, sodium bisulfite, trisodium phosphate and sodium sul-
fide.139 As well as for demineralization, the efficiency of deprotei-
nization depends on the concentration of the alkali, solid-to-
solvent ratio and time and temperature of the treatment.147

Although high temperatures are crucial for deproteinization effi-
ciency, they can cause undesirable side reactions if combined
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with very long incubation times. These include partial deacetyla-
tion of chitin, hydrolysis of the biopolymer (lowering its molecular
weight) and change of characteristics.139, 148

Sodium hydroxide is the most widely used base for deproteini-
zation of crustacean biomass for the industrial production of chi-
tin.149 It has also been widely used for chitin purification from
insects (Table 1). Badawy and Mohamed88 are the only
researchers to have used potassium hydroxide to deproteinize
insect samples. The use of potassium hydroxide has also been
suggested by Fu et al.150 and Castillo et al.151 as a more eco-
friendly alternative to sodium hydroxide for shrimp deproteiniza-
tion, as the liquid waste generated using potassium hydroxide is
suitable for use as a fertilizer, owing to its high phosphorus, potas-
sium and nitrogen content.150 However, major deproteinization
processes of insect samples have been performed using sodium
hydroxide in low concentrations (0.5–2 mol L−1). In a few cases,
a concentration of 4 mol L−1 has been used.13, 64, 97 The incuba-
tion time required for the deproteinization of insect biomass var-
ies greatly from a few hours to a few days; however, the treatment
typically lasts for 16–20 h (Table 1). Using the same working con-
ditions, long deproteinization times applied to crustacean bio-
mass have been reported to lead to a higher loss of proteins
compared to shorter treatments.152 The deproteinization reaction
is generally performed at 80–100 °C, with a few exceptions being
40 °C88 or 175 °C.98

As well as for demineralization, the efficiency of deproteiniza-
tion (DPE) can be evaluated by measuring the protein content
of insect samples before (PCBD) and after deproteinization (PCAD),
according to the following equation:

DPE %ð Þ= PCBD %ð Þ−PCAD %ð Þ
PCBD %ð Þ ×100 ð2Þ

Deproteinization efficiency of insect biomass has been men-
tioned only by Kim et al.110,111 In both cases amaximum efficiency
of 86–87% was achieved by applying 1.25 mol L−1 sodium
hydroxide for 3 h at 95 °C on adult specimens of M. domestica110

and G. bimaculatus.111 These values are similar to those obtained
by Zhou et al.,133 who used natural deep eutectic solvents to
remove proteins from H. illucens prepupae. The deproteinization
efficiency of sodium hydroxide on crustacean shells at both high
and room temperature was 71–76%.149

Results from chitin purification
Information is lacking on the results obtained from chemical
demineralization and deproteinization of insect samples. Most
papers have reported only chitin yield as the end result of the
purification process (Table 1). Chitin yield is measured as the per-
centage ratio of dry weight of chitin and dry weight of the source
material. Chitin yield from insect biomass varied from a minimum
of approximately 2% – obtained from Vespa crabro larvae,103

G. bimaculatus adults,111 Apis mellifera adults116 and B. mori lar-
vae122 – to amaximumof 36% obtained from A. mellifera adults120

and cicada sloughs.11

However, most authors have reported a chitin yield of between
5 and 15% (Table 1). Yields of chitin extracted from shells of crus-
taceans, mainly shrimps, prawns and crabs, varied from 5 to
32%.26, 64, 121, 147, 153–156 Chitin content can vary widely depend-
ing on the species, developmental stage and body part of the
crustacean.91, 103, 153, 156 For example, Thirunavukkarasu and
Shanmugam156 reported that the yield of chitin was higher from
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the cuticle of crab legs than from its carapace and claws. These
findings are in accordance with the results of Kaya et al.99 who
found a higher chitin content in the legs than in other body parts
of honeybees. Thus, the chitin content of a body part correlates
with the mechanical load on that body part.
Only Huet et al.93 and Kaya et al.103 have measured the degree

of purification for chitin extracted from Bombyx eri larvae and
three developmental stages of V. crabro, respectively (Table 1).
Using various times and temperatures for both demineralization
and deproteinization treatments, they obtained similar results,
that is, between 93 and 97%. Using natural deep eutectic solvents,
Zhou et al.133 achieved a slightly lower degree of purification (74–
91%) from H. illucens prepupae. The lack of quantitative assess-
ment of the purity of insect-based chitin makes it difficult to eval-
uate the suitability of the methods.
After demineralization and deproteinization, chitin can be

directly deacetylated to chitosan or can be bleached to improve
its color and remove the residual lipids.

Bleaching as the final step
Many kinds of pigments and structural colors are involved in the
coloration of insect cuticle. They originate from the tyrosine-
mediated cuticle-tanning pathway, such as melanins, or originate
from 3,4-dihydroxyphenylalanine and dopamine during the pro-
cess of cuticular tanning and sclerotization.157 During

demineralization and deproteinization treatments, a small
amount of pigment and lipid is removed; however, chitin retains
a brownish appearance. For commercial purposes, the color of
chitin and chitosan is required to be as white as possible. Thus,
an additional step of bleaching is used to remove residual pig-
ments and improve chitin, and thus chitosan, color.
Industrial methods for purifying chitin from crustacean waste

include the use of sodium hypochlorite or hydrogen peroxide as
bleaching agents.158, 159 A few papers have reported the use of
hydrogen peroxide combined with hydrochloric acid for bleach-
ing insect samples.115, 120 Sometimes sodium hypochlorite11,
94, 106, 124 or ammonium peroxidisulfate89 are used, but insect
decolorization is performed using a mixture of methanol–chloro-
form91, 108, 109, 118, 127 or alcohol–chloroform.64, 97 Treatment with
potassium permanganate and oxalic acid is also done fre-
quently.87, 90, 112–114, 117, 128

Even though they are often used, the approaches using organic
solvents have no or marginal bleaching efficiency, as they do not
break the bonds between chitin and tannins or catecholamines.
Bleaching treatment of insect samples is performed at room

temperature for a short duration (40–90 min).99, 103, 106, 118 Higher
temperatures were applied by Chae et al.89 (50 °C for 30 min with
ammonium peroxidisulfate) and Nemtsev et al.120 (75 °C for 1 h
with hydrogen peroxide). A combination of potassium permanga-
nate and oxalic acid has also been used, where the bleaching step
was split into two steps: treatment with potassium permanganate
at room temperature and with oxalic acid at high temperatures
(60–70 °C).90, 114

Evaluation of the success of the bleaching step using various
reagents has not been provided. The bleaching effect of a decol-
orization treatment can be quantitatively evaluated by measuring
the L*, a* and b* values of a sample using a colorimeter, according
to the CIELab color system. CIELab is a color space that expresses
colors as three values: L* for lightness, a* from green to red and b*
from blue to yellow. From these values, the whiteness index can
also be calculated.160

Information on the effect of chitin bleaching on the yield and
characteristics of chitosan has been given only by Nemtsev
et al.120 Part of the chitin extracted from honeybee corpses was
bleached using 3% hydrogen peroxide for 1 h at 75 °C. The yield
of chitosan derived from non-bleached chitin (20–30%) was
slightly higher than that of chitosan produced from bleached chi-
tin (16–25%); the degree of deacetylation of the two types of chit-
osan was similar.120 Furthermore, chitin bleaching can greatly
affect the viscosity of solubilized chitosan.120, 159

After the bleaching treatment is complete, chitin is dried, and
characterized to investigate its suitability for a desired application.
Otherwise, chitin can be deacetylated to afford chitosan.

CONVERSION OF CHITIN INTO CHITOSAN
Chitosan is obtained from the deacetylation of chitin (i.e. the
removal of acetyl groups from the chitin polymer). The resultant
chitosan has a high degree of free amino groups ( NH2) that pro-
vides active sites for many chemical reactions, thus making chito-
san a versatile polymer that is suitable for several modifications
and applications.159 Furthermore, chitosan has a much higher sol-
ubility than chitin and can be dissolved in slightly acidic solutions,
while chitin solubilization requires strong and highly concen-
trated mineral acids159 or solutions of lithium chloride and
organic solvents such as dimethylformamide, dimethylacetamide
and N-methyl-2-pyrrolidone.161

Figure 2. Industrial process for chitin purification and chitosan produc-
tion from crustacean shells.
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Chitin can be converted to chitosan by chemical deacetylation.
Alternatively, enzymatic deacetylation using deacetylases has
also been attempted. The enzymatic activity of various deacety-
lases towards chitin has been established; however, they are not
efficient in converting chitin to chitosan because of the crystallin-
ity of chitin.135, 136, 162 Pretreatment of chitin, such as heating,
grinding and treating with an alkaline solution, can lead to a
higher, yet insufficient, enzymatic activity.136 Due to this limita-
tion, on an industrial scale, chemical deacetylation is the most
commonly used method for chitosan preparation from crusta-
cean waste because of the low cost and suitability for mass pro-
duction.139 Deacetylation is performed by incubating chitin in a
concentrated solution of sodium hydroxide. Chitin deacetylation
can be performed either heterogeneously or homogeneously. In
the heterogeneous method, chitin is usually treated with a hot
concentrated solution of sodium hydroxide for a few hours.
Within the frame of the homogeneous method, chitin is incu-
bated in a concentrated sodium hydroxide solution at room tem-
perature for a few hours, followed by dissolution in crushed ice at
0 °C.92, 139 Heterogeneous conditions result in an irregular distri-
bution of N-acetyl-D-glucosamine and D-glucosamine units and
a blockwise distribution of acetyl groups along the chitosan chain.
In contrast, chitosan obtained under homogeneous conditions
has a random distribution of acetyl groups along the chain.
Hence, chitosans produced using these two methods can have
different physicochemical properties.163

Almost solely chemical heterogeneous deacetylation has been
reported for chitosan production from insects with sodium
hydroxide being used as the deacetylating agent. In a few cases,
sodium hydroxide was combined with sodium borohydride as a
‘protecting reagent’.119, 122, 132 For heterogeneous deacetylation
of insect biomass, the sodium hydroxide concentration ranges
from 40 to 60% (i.e. about 15–22 mol L−1) (Table 2). In most cases,
the deacetylation step lasts from 1 to 9 h, with a few exceptions of
longer incubation times of up to 2 days.104, 126 Temperatures of
heterogeneous deacetylation of insect samples range from 90 to
150 °C (Table 2). Ideally, deacetylation should result in non-
degraded chitosan with a high degree of deacetylation, enabling
its solubilization in dilute acidic solutions.159 The degree of deace-
tylation is defined as the proportion of glucosamine monomer
residues in the chitosan chain and it can affect the solubility and
performance of chitosan in many of its applications.164 Deacetyla-
tion can be optimized and adjusted according to need by adjust-
ing various factors, including temperature, time, alkali
concentration, solid-to-solvent ratio and particle size.

Assessment of chitin conversion into chitosan
Results obtained for chemical heterogeneous deacetylation of
insect samples, in terms of chitosan yield, degree of deacetylation
and molecular weight, are reported in Table 2. Chitosan yield was
calculated from the dry biomass of the original insect biomass or
the dry weight of chitin. Chitosan yields measured from the orig-
inal biomass ranged from 2 to 8%. The highest values (26–28%)
were obtained by Song et al.124 from Chrysomya megacephala lar-
vae and by Luo et al.113 from cicada sloughs. Chitosan yield calcu-
lated from the respective chitin dry weight ranged from 60 to 83%
(Table 2). Only Hahn et al.92 have performed both heterogeneous
and homogeneous deacetylation of the H. illucens larval exoskele-
ton, obtaining more than double the yield of chitosan with the
heterogeneous method compared to the homogeneous method.
Yields of chitosan produced from crustaceans with heteroge-
neous deacetylation varied from 4 to 15% (related to the initial

dry biomass).26, 113, 121, 153, 156, 165 These values are slightly higher
than those obtained from insects. The primary reason for that is
the presence of larger amounts of protein and fat in insect sam-
ples.166 However, as with chitin, chitosan yield can be affected
not only by the purification process, but also by the species and
harvest time.163 Considering the reported data, a unique defini-
tion of ‘yield’ for both chitin and chitosan is needed to make the
methods of measurement uniform.
The degree of deacetylation of chitosan produced from insects

with heterogeneous deacetylation varied between 62 and 98%
(Table 2). A lower value has been reported only by Monter-
Miranda et al.119 who obtained 57% deacetylated chitosan from
Brachystola magna adults. The degree of deacetylation of chito-
san extracted from crustaceans with the heterogeneous method
normally ranges from 56 to 98%,167 while the average degree of
deacetylation obtained with homogeneous treatment is 48–
55%.139 At least 80–85% deacetylation is necessary for the good
solubility of chitosan.167 The degree of deacetylation can be
increased or decreased by changing temperature, time and
sodium hydroxide concentration.159 Moreover, there is a correla-
tion between temperature and rate of deacetylation: high tem-
peratures can increase deacetylation, whereas long residence
times can improve deacetylation but only up to a certain point.
For instance, alkali treatment using 50% sodium hydroxide at
100 °C beyond 2 h does not deacetylate crustacean-based chitin
further significantly; rather it can degrade the polymer chain.159

Chitosan is a biopolymer of highmolecular weight, which varies
depending on the source and deacetylation treatment applied.
The molecular weight of crustacean-based chitosan ranges from
100 to 1000 kDa.25, 26 Chitosan produced from insects has a
molecular weight ranging from 26 to 300 kDa (Table 2). Very low
values (3 and 7 kDa) have been reported, too.91,96,127 High reac-
tion temperatures (150 °C) combined with long incubation times
(4–6 h) may have caused polymer degradation. The use of stan-
dard chitosans with known molecular weights can be useful to
assess the validity of the applied analysis method. However, dif-
ferences in chitosan molecular weights can also be related to
the insect species, as shown by Kim et al.,111 who applied the
same deacetylation conditions as Kaya et al.96 and obtained a chit-
osan with a much higher molecular weight (308 kDa from adult
crickets versus approximately 3 kDa from both adults and larvae
of the Colorado potato beetle). A very high molecular weight
(3290–5900 kDa) has been reported by Paulino et al.122 for chito-
san produced from silkworm using 40% sodium hydroxide and
sodium borohydride at 100 °C. This could be because sodium
borohydride prevents oxidative cleavage of glycosidic bonds dur-
ing deacetylation.
Deacetylation treatment conditions can affect chitosan molecu-

lar weight and thus its physicochemical properties or bioactivity.
Notably, molecular weight has a great influence on the biological
activity of chitosan: chitosan with lowmolecular weight (i.e. lower
than 150 kDa) has good antibacterial properties.168, 169 Studies
carried out on bacteria potentially pathogenic to humans, such
as Salmonella typhimurium, Listeria monocytogenes, Bacillus cereus
and E. coli, have confirmed that low-molecular-weight chitosan
has a greater effect on reducing microorganism growth and mul-
tiplication.168, 169 Small chitosan chains have higher mobility,
attraction and ionic interaction than long chains, facilitating an
effective binding of chitosan to the membrane surfaces of
bacteria.168

To evaluate the suitability of chitin and chitosan for desired
applications, they need to be characterized. Several metrics can
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be used to assess chitin and chitosan characteristics and proper-
ties, such as degree of deacetylation, molecular weight, viscosity,
morphology and solubility. Analysis methods and the investi-
gated characteristics vary according to the final purpose.

ANALYTICAL METHODS
As mentioned in the previous sections, multiple studies have
described the extraction of insect-based chitin and its subsequent
conversion to chitosan. Although the processing conditions have
been stated in detail in the relevant articles, discrete and quanti-
tative values regarding yield and degree of purification are miss-
ing. This hampers the assessment of the economic potential of
chitin and chitosan derived from insects and the side streams of
their cultivation, especially in comparison to production from
crabs, shrimps or fungi. However, a general comparison, in terms
of structure, chemical composition and purity, with commercial-
ized sources can be made with the help of physicochemical
and/or spectroscopic data. Table 3 summarizes themainmethods
applied for the characterization of insect-based chitin and chito-
san. Additionally, we include NMR spectroscopic data in the table.
NMR, not being a method currently applied for the analysis of
insect-based chitin, is promising towards validity and significance
of the data.
The resulting data can support performance assessment of

insect-based material in prospective applications. Furthermore,
the data contribute to focusing and identifying new application
fields.

Infrared spectroscopy
Infrared spectroscopy is the most frequently applied method to
examine insect-based chitin and chitosan; especially to determine
the degree of deacetylation of the polysaccharides. The tech-
nique, which exploits infrared light to obtain data from excited
vibrational states of the functional groups in a sample, enables
rapid analysis. According to the functional groups contained in
the molecules, the most significant bands of insect-based chitin
and chitosan occur at wavenumbers of 1310–1320 cm−1

(CN stretching, amide III), 1550–1560 cm−1 (NH bending, amide
II), 1590–1600 cm−1 (NH2 bending), 1650–1655 cm−1

(CO stretching, amide I), 3100–3110 cm−1 (NH symmetric stretch-
ing), 3255–3270 cm−1 (NH asymmetric stretching) and
3430–3450 cm−1 (OH stretching)170, 171 (Fig. 3). The same is true
for chitin and chitosan derived from crustaceans, where the wave-
numbers of the peaks can vary slightly among different natural
sources.88

For insect-based chitin and chitosan, infrared spectra were used
to confirm the homogeneity of chitin and chitosan isolated from
several insect species,113 to compare the spectral bands with
those of commercially available chitin and chitosan94, 123 or to
confirm the purity of insect-based chitin after the isolation pro-
cess106 by considering the strength and position of characteristic
bands.
The most practical application of this method has been for

determining the degree of acetylation of investigated samples
by calculating and comparing the absorption values measured
at specific wavelengths.89 Accurate quantification is challeng-
ing172; comparability and significance are minor due to the differ-
ent bands applied for calculating the degree of acetylation by
different researchers. Further sources of errors can be individual-
specific or due to inappropriate baseline settings within the spec-
tra and impurities in the sample, e.g. the presence of proteins can

lead to an overlap of the characteristic chitin and chitosan peaks
in the infrared spectrum and thus to wrong values.22, 173 In the
authors’ opinion, infrared spectra used to obtain valid information
or even quantitative values from insect-based chitin and chitosan
are of limited conclusiveness. It is a useful auxiliary for qualita-
tively determining the presence of functional groups, but not to
provide quantitative data subject to strong variation based on,
for example, impurities or water content in samples.
Tools like partial least squares regression are hence mandatory

for increasing the validity of the data and will also provide an
added value to the infrared spectra of insect material,174 although
extensive and time-consuming calibration work is required. Since
manual evaluation concerning the determination of the degree of
acetylation is error-prone and less comparable, an automated
software-assisted extraction of relevant data would thus be bene-
ficial. Nevertheless, the identification of chitin- and chitosan-
related functional groups, such as acetamido or amino groups,
present in insect-based material is feasible using infrared
spectroscopy.

X-ray diffraction
X-ray diffraction is the second most common analysis method
used to characterize chitin from insect-based materials. Although
X-ray diffraction is a powerful analytical technique for obtaining
structural information, in the literature reviewed it has been exclu-
sively used to determine the polymorphic form of chitin crystal-
lites and the crystal structure and crystal content of chitin and
chitosan isolated from insects.
The X-ray pattern provides information on the periodic arrange-

ment of atomswithin a sample. The resulting diffractogram shows
intensity as a function of 2⊔, which is defined as the angle
between the incident and diffracted beams.
X-ray diffraction measurements of insect-based chitin revealed

strong significant peaks at 9–11° and 19–20°, in addition to minor
peaks at 12–13°, ∼21°, ∼23° and ∼26°.91, 112, 126, 128, 131 These
peaks are valid for the highly symmetric orthorhombic crystal
structure of insect chitin, representing the ⊍-polymorphic form.
However, there are exceptions: Chitin from the cocoons of a moth
(Orgyia dubia) is in the γ-form, exhibiting an X-ray diffraction pat-
tern with high homology to the diffractogram obtained for ⊍-chi-
tin, differing from each other mainly in the peak at 12.9°.144

γ-Chitin and ⊎-chitin are polymorphs with a lower degree of order
than ⊍-chitin, making these polymorphs more reactive. For exam-
ple, ⊎-chitin is more accessible to swelling and for enzymatic and
chemical reactions than the ⊍-form,14 and therefore more readily
undergoes crystal disintegration. Thus, the conversion of ⊎-chitin
results in chitosan with lower crystallinity compared to chitosan
obtained by deacetylation of ⊍-chitin.175

Previous studies have confirmed that chitosan exists as two
crystalline polymorphs, either as a hydrated polysaccharide (‘ten-
don’ form)176 or as an anhydrous form (‘annealed’ chitosan).177

The presence of crystallites or crystalline regions in the amor-
phous regions of chitosan could be due to the unreacted chitin.178

The position of the X-ray peaks in the diffractogram is similar for
insect-based chitosan and chitin and comparable to peak posi-
tions determined for commercially available chitosan.89 Main
peaks for the chitosan crystal structure can be identified at 2⊔ of
∼10° and ∼20°.91, 113, 116

The crystallinity index for chitin and chitosan is commonly cal-
culated using the relation of the peak intensities measured at
16° (Iam), which is attributable to the amorphous content of the
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sample, and at 20° (I110) according to the equation of Segal
et al.179:

Crystallinity index %ð Þ= I110−Iam
I110

×100 ð3Þ

The reported crystallinity values for chitin vary greatly and cover
a wide range (40–90%) but are mainly between 60 and 80%.91,
93, 94, 126, 132 The broad range of values reported is due to the var-
ied sources, different purification methods used and is a function
of the drying, storage or preprocessing conditions.128 Grinding of
chitin is, for example, an effective method for decreasing its crys-
tallinity, disturbing the overall structure of the polysaccharide.178

Hence, there is a clear need to independently determine all sig-
nificant factors that affect the crystallinity of insect-based chitin
and chitosan using X-ray-based investigations. The authors
believe that low crystallinity values achieved for insect-based chi-
tin and chitosan are of major importance and are highly relevant
for most applications. For instance, lower crystallinity of chitosan
facilitates its solubility in acidic solutions, increases its sorption
ability and increases the accessibility of the primary free amino
groups of chitosan.180, 181

Thermogravimetric analysis
Similar to X-ray diffraction analysis, thermogravimetric analysis
has also been used to determine the polymorphic form of
insect-based chitin. Additionally, the temperature at which chitin
and chitosan completely decompose can be measured by ther-
mogravimetric analysis. The method records mass loss of a sam-
ple over time as temperature increases and is visualized in a
thermogram. For insect chitin, thermograms exhibit two decom-
position steps. One is a result of water evaporation between
50 and 110 °C, leading to a low mass loss of the sample (1–7%).
A second peak at 300–400 °C is caused by the dehydration of
the saccharide backbone, polymerization of the degradation
products and decomposition of the acetyl function.122 The
amount of mass lost during this second decomposition step

ranges from 50 to 95%.102, 103, 105, 128 Themaximal thermal degra-
dation temperature (DTGmax), which corresponds to the tempera-
ture at which the highest mass loss is determined, is in a more
narrow temperature range: DTGmax values for chitin from different
body parts of Z. morio, Melolontha sp., A. pandora or H. illucens
have been evaluated to be 350–390 °C, indicating the presence
of the ⊍-form.98, 100, 103, 126 DTGmax values obtained for ⊍-chitin
isolated from marine fishery waste are in the same range.11, 93

Typically, ⊍-chitin has a higher second decomposition tempera-
ture than ⊎-chitin,102 which is attributed to the lower crystallinity
of the latter.182 Sometimes, a third decomposition peak at tem-
peratures above 700 °C has been reported which is attributed to
residual minerals not removed during demineralization.11

The thermograms of insect-based chitin do not reveal large
deviations to the chitosan produced. The main difference here is

Table 3. Overview ofmajor analytical methods applied for investigation of insect-based chitin and chitosan. Due to its importance, validity and sen-
sitivity, NMR spectroscopy is listed as prospective powerful tool to analyze insect-based chitin and chitosan although it is not discussed here

Method applied General principle
Main applications for (insect-based)

chitin and chitosan

Infrared spectroscopy Excitation of vibrations by irradiation with infrared beams Determination of deacetylation degree
X-ray spectroscopy Detection of elastic scattered X-rays Crystallinity determination

Determination of chitin polymorph
Thermogravimetric
analysis

Mass loss or heat flow determination during heating Degradation temperature
Moisture content
Determination of chitin polymorph

Elemental analysis Combustion and content determination of different elements Determination of deacetylation degree
for chitin and chitosan

Purification degree of chitin
Viscometry Measuring the viscosity of the polysaccharide-containing solutions Measuring viscosity-averagemolecular

weight
Scanning electron
microscopy

Reflection of electrons interacting with atoms Determination of chitin surface
morphology

NMR spectroscopy Investigation of the electronic environment of single atoms and the interaction
with neighboring atoms

Determination of deacetylation degree
Distribution of acetyl groups
Determination of impurities

Figure 3. Exemplary infrared spectra of chitin and chitosan obtained
from H. illucens pupal exuviae (own measurements).
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a shift of the decomposition peak to slightly lower temperatures
during chitosan heating (<320 °C), which means that chitin is
more stable.95 This is due to the increased number of N-acetyl
groups in the chitin providing a higher stability than the primary
amino groups of the chitosan.181, 183

Although several thermogravimetric analysis studies and data
for insect chitin and chitosan are available, valid or useful charac-
teristic values, such as the activation energy of degradation, have
not been calculated and published yet. Hence, there is a need for
substantial discussion and evaluation rather than stating superfi-
cial qualitative expressions. The DTGmax values obtained reveal
significant differences for chitin or chitosan, but these are not
application-relevant. Processing chitin and chitosan at elevated
temperatures does not significantly improve processing proper-
ties, as phase transition from crystalline to amorphous form does
not occur until decomposition.
The information obtained using thermogravimetric analysis is

thus limited, especially as the polymorphic form of chitin can also
be identified with X-ray spectroscopy. Another option is to per-
form a more comprehensive thermal analysis. Newer instruments
can perform calorimetric and thermogravimetric measurements
simultaneously, providing additional information about the type
and enthalpy values of conversion occurring during heating and
purity of chitin and chitosan.126, 131

Elemental analysis
Thermogravimetric analysis enables the determination of sample
degradation temperature. In contrast, elemental analysis utilizes
degradation and combustion of insect-based chitin and chitosan
and the subsequent detection of carbon, hydrogen, nitrogen
and oxygen to determine its molecular composition and acetyl
content. Although complementary to several other methods,
the determination of degree of acetylation (DA) of insect-based
chitin and degree of deacetylation (DD) of insect-based chitosan
via elemental analysis is of high practical relevance,184, 185 and is
calculated using the following equations186, 187:

DA %ð Þ=
C %ð Þ
N %ð Þ−5:14

1:72

 !
×100 ð4Þ

DD %ð Þ=
6:89− C %ð Þ

N %ð Þ
1:72

 !
×100 ð5Þ

Theoretically, fully acetylated chitin contains 6.9% nitrogen and
fully deacetylated chitosan contains 8.7% nitrogen.188 Assuming
100% purity of samples, the higher the nitrogen content the lower
is the degree of acetylation and vice versa. Typically, the mea-
sured nitrogen content for insect-based chitin is lower than the
theoretical value, resulting in an overestimation – according to
Eqn (4) – of the degree of acetylation. For example, Erdogan and
Kaya91 used elemental analysis to determine the nitrogen content
of chitin from D. maroccanus adults and nymphs at 4.6 and 5.7%,
resulting in degrees of acetylation of 232 and 187%, respectively.
Degrees of acetylation exceeding 100% have been determined
for chitin extracted from D. maroccanus and species such as O.
asellus (169%) and V. crabro (127%).64, 103, 109, 115 The validity of
the conclusions is hence severely limited. It can be assumed that
these overestimations result from nitrogen-free impurities, such
as lipids and sugars, in samples, which make up to 43% of edible
insects such as A. domesticus and T. molitor.189

The overestimation of the degree of acetylation pertains to chi-
tin from insects. It is different for insect-based chitosan and the
determination of its degree of deacetylation via elemental analy-
sis. The degree of deacetylation for chitosan obtained from the
conversion of chitin from Z. morio and B. mori ranges from 52 to
95%,126, 132 which are reasonable values. It can be assumed that
the validity of these values is due to a higher degree of purifica-
tion of chitosan, in contrast to the insect-based chitin samples
containing a significant amount of impurities. The conversion
steps from chitin to chitosan involve severe conditions such as
use of high temperature and sodium hydroxide concentration,
followed by selective precipitation of chitosan from solution by
pH neutralization. These steps provide additional purification,
resulting in valid calculations of degrees of deacetylation for
insect-based chitosan using elemental analysis.
However, the presence of impurities in both chitin and chitosan

cannot be excluded. As already mentioned in the chitin purifica-
tion and deacetylation section of this review, purity can be deter-
mined only for a minority of chitins and chitosans produced from
insects. For accurate degree of acetylation of chitin or degree of
deacetylation of chitosan, pre-quantification of impurities is man-
datory. Nevertheless, a thorough and effective purification is cru-
cial to provide unimpeded characterization of insect-based chitin
and chitosan using various methods.

Molecular weight measurement via viscometry
The so-called viscosity-average molecular weight of insect-based
chitosan can be determined by measuring the intrinsic viscosity
of a solution using an Ubbelohde viscometer. Molecular weight
determination is based on the fact that the viscosity of the solu-
tion, in addition to the degree of deacetylation, depends on the
molar mass of chitosan. Previous studies have reported a value
for insect chitosan viscosity-average molecular weight in the
range of 426–450 kDa.87, 114 Other authors have determined
much lower values (<10 kDa) for D. maroccanus and L. decemli-
neata chitosan.91, 96 Odote et al.121 investigated the viscosity-
average molecular weight of lobster, prawn and crab chitosan in
comparison to that of chitosan from blowfly larvae and found sim-
ilar values for all chitosans, which is potentially due to their similar
chitin conversion conditions. The same authors also stated that
the viscosity-average molecular weight of insect chitosan
decreases with higher deacetylation temperature and incubation
time, confirming that the applied conversion parameters are
more significant than the origin of chitin used for deacetylation.
Another application for viscometry is to record the progress of
chitosan hydrolysis: Nemtsev et al.120 reported a decrease of
honeybee-derived chitosan viscosity-average molecular weight
during enzymatic hydrolysis in slightly acidic solution from
257 to 21 kDa.
In contrast to chitosan, chitin solubility is limited to a few sol-

vents. Nevertheless, Draczynski reported that the solubilization
of honeybee chitin in dimethylacetamide–LiCl results in a
viscosity-average molecular weight of 426–738 kDa that depends
on the time of deproteinization.90

More sophisticated methods and instruments are required,
instead of the standard laboratory Ubbelohde viscometer, for
measuring weight-average and number-average molecular
weights and polydispersity or molecular weight distribution of
chitin and chitosan. For example, gel permeation chromatogra-
phy measurements with a multi-angle laser light scattering detec-
tor revealed a molecular weight for insect-based chitosan of
approximately 308 kDa and a polydispersity index of 1.2.111
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However, viscosity-average molecular weight as an outcome is
important as it affects many other physicochemical or
application-specific investigations, such as bioactivity, adhesion
force and gelation properties.

Scanning electron microscopy
Previously described analysis methods generated information
concerning structural features, chemical composition or physico-
chemical properties of insect-based chitin and chitosan. Scanning
electron microscopy enables visualization of the polysaccharide
surface in the nanometric range using a focused beam of
electrons.
Various surface morphologies have been described for insect-

based chitin: rough or smooth surfaces with or without pores
and/or fibrils.116 The range of diversity of various chitin surfaces
derived from insects is shown in Fig. 4. However, most chitin sur-
faces extracted from insects exhibit a rough fibrillary structure
with pores. The diameter of the fibrils ranges from 10 to
50 nm,64, 91, 101, 108 and the chitin fibrils are surrounded by a pro-
tein matrix.190 The pore diameters range from 100 to 500 nm. The
highly porous structure increases the accessible surface area and
thus the adsorption capacity of the material.
Scanning electronmicroscopy imaging of insect-based chitosan

has been performed in only a small number of studies. Kaya
et al.101 reported chitosan with a surface morphology similar to
that of the chitin from which it was derived, which suggests that
the chitin structure is preserved in chitosan. The surface morphol-
ogy of chitin also depends on other factors. It can be influenced
by characteristics inherent to the natural source, such as
species,95, 118 sex13 or body part,99 and by process conditions,
such as the selected pretreatment procedure.93 Moreover, chitin
content, degree of purification and washing procedure can play
a major role as the surrounding matrix and matrix constituents
on the surface not removed during purification mask the chitin.
Due to this, the validity of this method for investigating chitin
and chitosan is limited. However, knowledge of the surface struc-
ture of chitin and chitosan is important for processes in which sur-
face architecture greatly affects functionality.

Assessment of analytical investigations
The methods described are the most frequently mentioned ana-
lytical techniques applied for the investigation of insect-based
chitin and chitosan. The major conclusion from screening the
analysis results is that there is a high structural and chemical
homology between chitin and chitosan derived from insects
and marine animals. However, despite the large amount of avail-
able data, knowledge gaps exist that need to be filled in prospec-
tive studies to assess the potential of insect-based chitin and
chitosan. What has already been said for chitin yield and degree
of purification also holds true here: there is a lack of valid data
and/or the results were not properly evaluated or discussed to
accelerate research on this topic. For example, many infrared
spectra from chitins and chitosans from different sources are
available, which are nearly the same as each other and provide
no additional information. Similarly, thermogravimetric analysis
data have limited validity as the DTGmax values reported are in
the same temperature range. In contrast, X-ray data show strongly
varying crystallinity values for chitin and chitosan. Thus, it is
unclear if the data presented are a result of processing conditions,
life cycle stage or body part of the insect.
Hence, the authors suggest firstly performing comprehensive

studies to identify parameters that contribute significantly to the

properties of insect-based chitin and chitosan. Secondly, the
authors strongly believe that spectroscopic and chromatographic
data would be more valid if they were related to the degree of
purification of the chitin and chitosan investigated. Therefore, it
is necessary to first determine the purity of polysaccharides after
extraction and deacetylation since contaminations can disrupt
accurate measurements of degree of deacetylation. Elemental
analysis is a tool which could be applied to, at least, estimate
the degree of purification and to evaluate if the measurements
performed are valid. Thirdly, there is a need to standardize the cal-
culationmethods and equations; for example, to agree on specific
bands and peaks used for calculation when determining crystal-
linity via X-ray spectroscopy. Fourthly, we recommend using sta-
tistical software to evaluate the results and to increase the
information content of a presented data set. In our opinion, infra-
red spectroscopy can reveal degrees of deacetylation and impu-
rity content accurately if evaluated using multivariate data
analysis or similar methods. Lastly, techniques such as titration-
based methods can be applied for higher sensitivity in determin-
ing degree of deacetylation. Although revealing a precise
determination method, titration is time-consuming. Another
highly accurate and automatable tool, to determine the degree
of deacetylation of chitin and chitosan in solid state or solubilized,
is NMR spectroscopy. Several studies exhibited the potential of 1H
NMR, 13C NMR and 15N NMR spectroscopy to determine the
degree of deacetylation, the distribution of acetyl groups and
the cross-linkages of the chitin and chitosan.191–193 Possibly due
to the need for enhanced equipment and specific expertise, com-
prehensive studies concerning insect-based chitin and chitosan
are lacking. We further recommend performing application-based
investigations, such as measurement of viscosity, adhesion, film
formation and adsorption capacity. For successful commercializa-
tion of insect-based chitin and chitosan, such detailed knowledge
is mandatory.

CONCLUSIONS AND FUTURE PROSPECTS
Chitin and especially chitosan are natural polymers with many
useful properties and are widely used in a broad range of applica-
tions. Presently, the main commercial source of chitin and chito-
san comprises waste streams from the marine fishery industry;
however, their availability is limited by geography and season.
The recent increase in demand for chitin and chitosan in the
global market has drawn attention to alternative sources inde-
pendent of marine fishery waste. Insect breeding farms, which
are used for waste management through insect-mediated bio-
conversion or for producing proteins and fats from larval stages,
are being launched worldwide. In addition to the production of
valuable compounds, insect breeding generates several side
streams (dead adults, exuviae, exoskeletons, frass and residual
feed) that have not yet been valorized. These side streams provide
a cheap source of chitin, which is abundantly available and not
regionally or seasonally limited. Furthermore, the chitin content
of exuviae and exoskeletons exceeds 23%,78 suggesting favorable
conditions for chitin and chitosan production in the future.
In contrast, the chitin content of whole insects is generally

lower.78, 85 Due to the moderate content, insect breeding only
for chitin isolation is not economically feasible without cascade
usage of other compounds derived from the insect breeding.
The chitin content in insects is a function of species, type of feed

and of life cycle stage. Moreover, the life cycle stage determines
the complexity of the matrix in which chitin is embedded. Insects
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undergo sclerotization during metamorphosis to the adult stage.
Sclerotization comprises cross-linkage of the insect cuticle with
catecholic compounds. This makes necessary a more sophisti-
cated purification process and at least one additional bleaching
step to isolate pure chitin from insect biomass. On the contrary,
decolorization is not mandatory for chitin purification from
marine fishery waste. The need for bleaching arises because the
chitin isolated from dead adult insects and exuviae contains these
sclerotized structures with dark colour. Chitin production can be
more economically feasible from side streams of insects bred for
a different purpose.
The purification of chitin begins earlier in the process and com-

prises fractionating the chitin-containing compounds from
those with no or low chitin. Although insect breeding, for the iso-
lation of protein and fat, is a highly automated and controlled
operating process, a mechanical process for separating chitin-
rich substances needs to be developed to eliminate the current
practice of manual collection. Similarly, manual collection of
chitin-rich material is opposed to the prospective application

of insect-based chitosan in medicine and requires good
manufacturing practice or laboratory-like controlled conditions.
Furthermore, the raw materials used for insect breeding vary
according to availability (e.g. vegetable waste from agri-food
chain, cereal straw, distillers’ grains and cereal meals). Although
insect-mediated bioconversion is a flexible and robust process
and leads to a high-quality fat and protein fraction almost inde-
pendent of the varying quality of the side streams, it is challeng-
ing for an automated process to lead to chitin and chitosan with
a consistent composition.
Currently, chitin purification from insect biomass is an area of

focus for researchers and is mainly performed on a laboratory
scale using the same methods applied for purification from crus-
tacean shells. Most available literature on chitin and chitosan pro-
duction from insects is limited to a description of the chitin
extraction process and its subsequent deacetylation into chitosan.
Information on the quantitative evaluation of extraction, purifica-
tion, deacetylation and bleaching efficiency, and the degree of
purification of products is missing. In the case of insects, it is

Figure 4. Scanning electronmicroscopy images of chitin extracted from (a) Cicadatra atra, (b) Cicada hyalina, (c) Cicada lodosi, (d) Cicadamordoganensis,
(e) Cicada platyptera and (f) Cicadivetta tibialis. Reprinted from Mol et al.118 with permission of Wiley.
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especially important to assess the bleaching process, as insect
exuviae undergo sclerotization by catecholamine linkage, which
leads to dark coloration.85, 194 These factors hinder accurate
assessment of the economic potential of chitin and chitosan pro-
duction from insects and comparison with the process chain of
chitin isolation from crab shells.
A comparison of degree of deacetylation, molecular weight, sta-

bility, crystallinity and surface structure between insect- and
crustacean-based chitin and chitosan, performed using various
analytical methods, showed high similarity. This is encouraging
regarding the performance of chitin and chitosan derived from
insects for industrial applications and their use in new fields. How-
ever, for a comprehensive assessment, it is necessary to carry out
application-relevant investigations and to exploit the full poten-
tial of the methods in use for characterization.
Based on current knowledge, it can be supposed that insects

will be an important source of chitin and chitosan in the future,
especially if future studies focus on filling the knowledge gaps
highlighted in this review. The efficiency of each step of the puri-
fication process needs to be critically evaluated to optimize
methods applied to crustaceans and adapt them to insect bio-
mass. Alternatives to traditional chemical purification methods
should also be considered tomake the processmore environmen-
tally friendly. Future studies should focus on these aspects to
make optimal use of the side streams of insect breeding.
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