350 research outputs found

    Quantitative analysis of the genes affecting development of the hypopharyngeal gland in honey bees (Apis mellifera L.)

    Get PDF
    Royal jelly has many important biological functions, however the molecular mechanism of royal jelly secretion in hypopharyngeal gland (HG) is still not well understood. In our previously study, six genes (SV2C, eIF-4E, PDK1, IMP, cell growth-regulating nucleolar protein and TGF-βR1) have been shown to might be associated with royal jelly secretion. In this study, the relative expression levels of these genes were examined in the hypopharyngeal gland of workers at different developmental stages (nurse, forager and reversed nurse stages). The results indicated that the relative expression levels of SV2C, eIF-4E, IMP, cell growth-regulating nucleolar protein and TGF-βR1 were reversed at reversed nurse stage compared to forager stage. We concluded that these genes are possibly candidates related to hypopharyngeal gland development or royal jelly secretion

    GPUSCAN++^{++}:Efficient Structural Graph Clustering on GPUs

    Full text link
    Structural clustering is one of the most popular graph clustering methods, which has achieved great performance improvement by utilizing GPUs. Even though, the state-of-the-art GPU-based structural clustering algorithm, GPUSCAN, still suffers from efficiency issues since lots of extra costs are introduced for parallelization. Moreover, GPUSCAN assumes that the graph is resident in the GPU memory. However, the GPU memory capacity is limited currently while many real-world graphs are big and cannot fit in the GPU memory, which makes GPUSCAN unable to handle large graphs. Motivated by this, we present a new GPU-based structural clustering algorithm, GPUSCAN++, in this paper. To address the efficiency issue, we propose a new progressive clustering method tailored for GPUs that not only avoid high parallelization costs but also fully exploits the computing resources of GPUs. To address the GPU memory limitation issue, we propose a partition-based algorithm for structural clustering that can process large graphs with limited GPU memory. We conduct experiments on real graphs, and the experimental results demonstrate that our algorithm can achieve up to 168 times speedup compared with the state-of-the-art GPU-based algorithm when the graph can be resident in the GPU memory. Moreover, our algorithm is scalable to handle large graphs. As an example, our algorithm can finish the structural clustering on a graph with 1.8 billion edges using less than 2 GB GPU memory

    Modeling of Thermodynamic Properties and Phase Equilibria for the Cu-Mg Binary System

    Get PDF
    The phase equilibria associated with the binary Cu-Mg system are analyzed by applying results from first-principles calculations to a general solution thermodynamics treatment. Differing from previously reported models, we employ a four-species association model for the liquid, while the terminal and intermediate solid phases are modeled as substitutional solutions with one or two sublattices, respectively. The zero-Kelvin enthalpies of formation for the intermediate compounds, Cu2Mg-C15 (cF24) and CuMg2-Cb (oF48) are computed using the Vienna Ab-initio Simulation Package (VASP). The Gibbs free energy functions for the individual phases are evaluated, and the resulting binary phase diagram is presented over the full composition range. While the phase diagram we propose exhibits only modest deviation from previously reported models of phase equilibria, our treatment provides better agreement with experimental reports of heat capacity and enthalpy of mixing, indicating a more self-consistent thermodynamic description of this binary system

    The impact of medical insurance on medical expenses for older Chinese: Evidence from the national baseline survey of CLHLS.

    Get PDF
    With the deepening population aging process in China, the medical expenses of older adults has become a widespread concerned. Medical insurance is a major source of Chinese medical financing and payment. The study aims to understand the current status of medical expenses for older adults and explore the effect of different types of health insurance on medical expenses in China.The data came from the Chinese Longitudinal Health Longevity Survey (CLHLS) in 2014. The Kruskal-Wallis test and general multivariate linear regression model were applied to analyze the current situation and to explore how medical insurance as the main payment impacts medical expenses.A total of 4376 older participants were included in this study. The median of medical expenses of a total was 1500 Yuan per year. The proportions of participants who had the urban employee-based basic medical insurance (UE-BMI), the urban residents basic medical insurance (UR-BMI), the new rural cooperative medical insurance scheme (NCMS), and the commercial medical insurance were 10.8%, 8.4%, 72.7%, and 0.9%, respectively. 34.8% of older adults paid the health care service via the NCMS and 11.9% paid via the UE-BMI. Participating in the NCMS and UR-BMI are significantly related to the level of the medical fees of older adults. UE-BMI, UR-BMI, and NCMS as main payment eased the pressure of medical expenses.The influence of different types of medical insurances as main payments on the medical expenses of older adults is varied. Implementation of medical insurance should be taken to further relieve the medical expenses of older adults

    Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute myeloid leukemia (AML) is an immunophenotypically heterogenous malignant disease, in which CD34 positivity is associated with poor prognosis. CD34<sup>+ </sup>AML cells are 10-15-fold more resistant to daunorubicin (DNR) than CD34<sup>- </sup>AML cells. Curcumin is a major component of turmeric that has shown cytotoxic activity in multiple cancers; however, its anti-cancer activity has not been well studied in DNR-insensitive CD34<sup>+ </sup>AML cells. The aim of this study was to therefore to explore curcumin-induced cytotoxicity in DNR-insensitive CD34<sup>+ </sup>AML cell lines (KG1a, Kasumi-1), DNR-sensitive U937 AML cells, and primary CD34<sup>+ </sup>AML bone-marrow-derived cells.</p> <p>Methods</p> <p>Primary human CD34<sup>+ </sup>cells were isolated from peripheral blood mononuclear cells or bone marrow mononuclear cells using a CD34 MicroBead kit. The growth inhibitory effects of curcumin were evaluated by MTT and colony-formation assays. Cell cycle distribution was examined by propidium iodide (PI) assay. Apoptosis was analyzed by Wright-Giemsa, Hoechst 33342 and Annexin-V/PI staining assays. The change in mitochondrial membrane potential (MMP) was examined by JC-1 staining and flow cytometry. Expression of apoptosis-related proteins was determined by reverse transcription-polymerase chain reaction and Western blotting. Short interfering RNA (siRNA) against <it>Bcl-2 </it>was used in CD34<sup>+ </sup>KG1a and Kasumi-1 cells incubated with/without DNR.</p> <p>Results</p> <p>Curcumin inhibited proliferation and induced apoptosis and G1/S arrest in both DNR-insensitive KG1a, Kasumi-1 and DNR-sensitive U937 cells. Curcumin-induced apoptosis was associated with reduced expression of both Bcl-2 mRNA and protein, subsequent loss of MMP, and activation of caspase-3 followed by PARP degradation. Curcumin synergistically enhanced the cytotoxic effect of DNR in DNR-insensitive KG1a and Kasumi-1 cells, consistent with decreased Bcl-2 expression. Accordingly, siRNA against <it>Bcl-2 </it>increased the susceptibility of KG1a and Kasumi-1 cells to DNR-induced apoptosis. More importantly, curcumin suppressed Bcl-2 expression, selectively inhibited proliferation and synergistically enhanced the cytotoxicity of DNR in primary CD34<sup>+ </sup>AML cells, while showing limited lethality in normal CD34<sup>+ </sup>hematopoietic progenitors.</p> <p>Conclusion</p> <p>Curcumin down-regulates Bcl-2 and induces apoptosis in DNR-insensitive CD34<sup>+ </sup>AML cell lines and primary CD34<sup>+ </sup>AML cells.</p

    The Modulatory Role of CYP3A4 in Dictamnine-Induced Hepatotoxicity

    Get PDF
    Dictamni Cortex (DC) has been reported to be associated with acute hepatitis in clinic and may lead to a selective sub-chronic hepatotoxicity in rats. Nevertheless, the potent toxic ingredient and the underlying mechanism remain unknown. Dictamnine (DTN), the main alkaloid from DC, possesses a furan ring which was suspected of being responsible for hepatotoxicity via metabolic activation primarily by CYP3A4. Herein, the present study aimed to evaluate the role of CYP3A4 in DTN-induced liver injury. The in vitro results showed that the EC50 values in primary human hepatocytes (PHH), L02, HepG2 and NIH3T3 cells were correlated with the CYP3A4 expression levels in corresponding cells. Furthermore, the toxicity was increased in CYP3A4-induced PHH by rifampicin, and CYP3A4 over-expressed (OE) HepG2 and L02 cells. Contrarily, the cytotoxicity was decreased in CYP3A4-inhibited PHH and CYP3A4 OE HepG2 and L02 cells inhibited by ketoconazole (KTZ). In addition, the hepatotoxicity of DTN in enzyme induction/inhibition mice was further investigated in the aspects of biochemistry, histopathology, and pharmacokinetics. Administration of DTN in combination with KTZ resulted in attenuated liver injury, including lower alanine transaminase and aspartate transaminase activities and greater AUC and Cmax of serum DTN, whereas, pretreatment with dexamethasone aggravated the injury. Collectively, our findings illustrated that DTN-induced hepatotoxicity correlated well with the expression of CYP3A4, namely inhibition of CYP3A4 alleviated the toxicity both in vitro and in vivo, and induction aggravated the toxicity effects

    Threshold-independent method for single-shot readout of spin qubits in semiconductor quantum dots

    Full text link
    The single-shot readout data process is essential for the realization of high-fidelity qubits and fault-tolerant quantum algorithms in semiconductor quantum dots. However, the fidelity and visibility of the readout process is sensitive to the choice of the thresholds and limited by the experimental hardware. By demonstrating the linear dependence between the measured spin state probabilities and readout visibilities along with dark counts, we describe an alternative threshold-independent method for the single-shot readout of spin qubits in semiconductor quantum dots. We can obtain the extrapolated spin state probabilities of the prepared probabilities of the excited spin state through the threshold-independent method. Then, we analyze the corresponding errors of the method, finding that errors of the extrapolated probabilities cannot be neglected with no constraints on the readout time and threshold voltage. Therefore, by limiting the readout time and threshold voltage we ensure the accuracy of the extrapolated probability. Then, we prove that the efficiency and robustness of this method is 60 times larger than that of the most commonly used method. Moreover, we discuss the influence of the electron temperature on the effective area with a fixed external magnetic field and provide a preliminary demonstration for a single-shot readout up to 0.7 K/1.5T in the future.Comment: 18 pages, 6 figure
    corecore