1,076 research outputs found

    A Novel Admission Control Model in Cloud Computing

    Full text link
    With the rapid development of Cloud computing technologies and wide adopt of Cloud services and applications, QoS provisioning in Clouds becomes an important research topic. In this paper, we propose an admission control mechanism for Cloud computing. In particular we consider the high volume of simultaneous requests for Cloud services and develop admission control for aggregated traffic flows to address this challenge. By employ network calculus, we determine effective bandwidth for aggregate flow, which is used for making admission control decision. In order to improve network resource allocation while achieving Cloud service QoS, we investigate the relationship between effective bandwidth and equivalent capacity. We have also conducted extensive experiments to evaluate performance of the proposed admission control mechanism

    The Emergence and Growth of Ecosystem: The Strategic Role of Digital Innovation

    Get PDF
    Ecosystem is increasingly prevailing in global competitive landscape, which has received heightened attention in academia and practice. Extent literature has largely concentrated on the development of digital ecosystem in stage-based manner, however, viewing it from the perspectives of scale up and scope extension remains void. Based on an in-depth case study of a flower technology company in China, we inductively adopt the lenses of scale and scope to address how digital innovation can empower the development of ecosystem. In particular, we critically trace three mechanisms of ecosystem scale up: supplier agility, logistic optimization and network structure orchestration. Among which, we indicated a positive network effect in business digital ecosystem, identified influences of digital innovation toward market and further revealed the effectiveness of supplier inclusiveness in supply chain relationship. This model offers significant implications on information system, supply chain management literature and provides essential managerial implication

    Modeling the Light Curves of the Luminous Type Ic Supernova 2007D

    Full text link
    SN~2007D is a nearby (redshift z=0.023146z = 0.023146), luminous Type Ic supernova (SN) having a narrow light curve (LC) and high peak luminosity. Previous research based on the assumption that it was powered by the 56^{56}Ni cascade decay suggested that the inferred 56^{56}Ni mass and the ejecta mass are ∼1.5\sim 1.5M⊙_{\odot} and ∼3.5\sim 3.5M⊙_{\odot}, respectively. In this paper, we employ some multiband LC models to model the RR-band LC and the color (V−RV-R) evolution of SN~2007D to investigate the possible energy sources powering them. We find that the pure 56^{56}Ni model is disfavored; the multiband LCs of SN~2007D can be reproduced by a magnetar whose initial rotational period P0P_{0} and magnetic field strength BpB_p are 7.28−0.21+0.217.28_{-0.21}^{+0.21} (or 9.00−0.42+0.329.00_{-0.42}^{+0.32}) ms and 3.10−0.35+0.36×10143.10_{-0.35}^{+0.36}\times 10^{14} (or 2.81−0.44+0.43×10142.81_{-0.44}^{+0.43}\times 10^{14}) G, respectively. By comparing the spectrum of SN~2007D with that of some superluminous SNe (SLSNe), we find that it might be a luminous SN like several luminous ``gap-filler" optical transients that bridge ordinary and SLSNe, rather than a genuine SLSN.Comment: 11 pages, 5 figures, 1 table, accepted for publication in Ap

    Modeling the Light Curves of the Luminous Type Ic Supernova 2007D

    Full text link
    SN 2007D is a nearby (redshift z = 0.023146), luminous Type Ic supernova (SN) having a narrow light curve (LC) and high peak luminosity. Previous research based on the assumption that it was powered by the 56Ni cascade decay suggested that the inferred 56Ni mass and the ejecta mass are ~1.5 M ⊙ and ~3.5 M ⊙, respectively. In this paper, we employ some multiband LC models to model the R-band LC and the color (V − R) evolution of SN 2007D to investigate the possible energy sources powering them. We find that the pure 56Ni model is disfavored; the multiband LCs of SN 2007D can be reproduced by a magnetar whose initial rotational period P 0 and magnetic field strength B p are (or ) ms and (or ) G, respectively. By comparing the spectrum of SN 2007D with that of some superluminous SNe (SLSNe), we find that it might be a luminous SN like several luminous gap-filler optical transients that bridge ordinary and SLSNe, rather than a genuine SLSN
    • …
    corecore