360 research outputs found

    ZARA: Improving Few-Shot Self-Rationalization for Small Language Models

    Full text link
    Language models (LMs) that jointly generate end-task answers as well as free-text rationales are known as self-rationalization models. Recent works demonstrate great performance gain for self-rationalization by few-shot prompting LMs with rationale-augmented exemplars. However, the ability to benefit from explanations only emerges with large-scale LMs, which have poor accessibility. In this work, we explore the less-studied setting of leveraging explanations for small LMs to improve few-shot self-rationalization. We first revisit the relationship between rationales and answers. Inspired by the implicit mental process of how human beings assess explanations, we present a novel approach, Zero-shot Augmentation of Rationale-Answer pairs (ZARA), to automatically construct pseudo-parallel data for self-training by reducing the problem of plausibility judgement to natural language inference. Experimental results show ZARA achieves SOTA performance on the FEB benchmark, for both the task accuracy and the explanation metric. In addition, we conduct human and quantitative evaluation validating ZARA's ability to automatically identify plausible and accurate rationale-answer pairs.Comment: Accepted as a long paper at EMNLP Findings 202

    A system-level mechanistic investigation of traditional Chinese medicine, Yinlai Decoction, for related diseases

    Get PDF
    Purpose: To systemically explore the pharmacological mechanisms of traditional Chinese medicine, Yinlai Decoction (YD), used in the clinical management of pediatric diseases such as pneumonia and recurrent respiratory tract infections.Methods: An ingredient-target-disease database of YD was constructed using Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). First, the molecular targets related to lung and stomach diseases were searched and screened to avoid duplication. Second, the associations between these molecular targets were evaluated via Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and Gene Ontology (GO) and Pathway enrichment analysis in STRING.Results: A total of 627 chemical ingredients and 654 protein targets in YD were obtained. After further screening, 38 molecular targets linked to respiratory diseases, inflammatory responses and various infections were identified. Finally, 576 GO terms and 75 KEGG pathway terms were obtained by analyzing gene functional annotation clusters and abundance value of these targets. Most of these terms were closely related to the inflammatory response.Conclusion: Based on these in silico findings, the use of YD for treating respiratory diseases, inflammation and various infections, most probably via the suppression of inflammation, has been established. The approach adopted in this study can serve as a model methodology to develop an innovative TCM candidate drug at a network pharmacology level.Keywords: Yinlai Decoction, Network (System) pharmacology, Inflammation, Interacting genes/proteins, Gene ocntology, Pathway enrichment analysi

    Entanglement in spin-1/2 dimerized Heisenberg systems

    Full text link
    We study entanglement in dimerized Heisenberg systems. In particular, we give exact results of ground-state pairwise entanglement for the four-qubit model by identifying a Z_2 symmetry. Although the entanglements cannot identify the critical point of the system, the mean entanglement of nearest-neighbor qubits really does, namely, it reaches a maximum at the critical point.Comment: Four pages, three figures, accepted in Communications in Theoretical Physic

    Gene Responses to Oxygen Availability in Kluyveromyces lactis: an Insight on the Evolution of the Oxygen-Responding System in Yeast

    Get PDF
    The whole-genome duplication (WGD) may provide a basis for the emergence of the very characteristic life style of Saccharomyces cerevisiae—its fermentation-oriented physiology and its capacity of growing in anaerobiosis. Indeed, we found an over-representation of oxygen-responding genes in the ohnologs of S. cerevisiae. Many of these duplicated genes are present as aerobic/hypoxic(anaerobic) pairs and form a specialized system responding to changing oxygen availability. HYP2/ANB1 and COX5A/COX5B are such gene pairs, and their unique orthologs in the ‘non-WGD’ Kluyveromyces lactis genome behaved like the aerobic versions of S. cerevisiae. ROX1 encodes a major oxygen-responding regulator in S. cerevisiae. The synteny, structural features and molecular function of putative KlROX1 were shown to be different from that of ROX1. The transition from the K. lactis-type ROX1 to the S. cerevisiae-type ROX1 could link up with the development of anaerobes in the yeast evolution. Bioinformatics and stochastic analyses of the Rox1p-binding site (YYYATTGTTCTC) in the upstream sequences of the S. cerevisiae Rox1p-mediated genes and of the K. lactis orthologs also indicated that K. lactis lacks the specific gene system responding to oxygen limiting environment, which is present in the ‘post-WGD’ genome of S. cerevisiae. These data suggested that the oxygen-responding system was born for the specialized physiology of S. cerevisiae

    The value of total tumor diameter in unilateral multifocal papillary thyroid carcinoma: a propensity score matching analysis

    Get PDF
    BackgroundTumor multifocality is frequently observed in papillary thyroid carcinoma (PTC). However, the maximum tumor diameter (MTD), currently utilized in various staging schemes, might not accurately indicate the level of aggressiveness exhibited by multifocal tumors. We aimed to investigate the relationship between total tumor diameter (TTD) and clinicopathological features of papillary thyroid carcinoma.MethodsRetrospective data analysis was done on 1936 individuals who underwent complete thyroidectomy for PTC. Patients were classified into subgroups according to unilateral multifocality, central lymph node metastasis (CLNM) and lateral lymph node metastasis (LLNM). The relationships of clinicopathological features among these groups were analyzed.ResultsUnilateral multifocality was observed in 117 patients. The clinicopathological features of the unilateral multifocal PTC were similar to the unifocal PTC with approximate TTD. The unilateral multifocality played no independent role in CLNM and LLNM. Moreover, the efficiency of TTD in predicting CLNM and LLNM was significantly higher than that of MTD.ConclusionIn the case of unilateral multifocal PTC, TTD is a more accurate indicator of the biological characteristics of the tumor than MTD

    Hierarchical domain structure and extremely large wall current in epitaxial BiFeO3 thin films

    Get PDF
    Funding: J.F.S. acknowledges the financial support of the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB07030200).Erasable electrical conductive domain walls in an insulating ferroelectric matrix provide novel functionalities for applications in logic and memory devices. The crux of such success requires sufficiently high wall currents to drive high‐speed and high‐power nanodevices. This work provides an appealing strategy to increase the current by two orders of magnitude through the careful selection of current flowing paths along the charged walls. The dense walls come into form through the hierarchical evolution of the 71°, 109°, and 180° domains of epitaxial BiFeO3 films in a planar‐geometry ferroelectric resistance‐switching memory cell. The engineered films grown on SrTiO3 and GdScO3 substrates allow the observation of detailed local configurations and the evolution of the different domain types using vector piezo‐force microscopy. The higher local electrical conductivity near the charged domain walls is identified by conductive atomic‐force microscopy. It is shown that 180° domain reversal proceeds by three‐step 71° rotations of the pristine domains. Surprisingly, a maximum current of ≈300 nA is observed for current paths along charge‐uncompensated head‐to‐head hierarchical domain walls connecting the two electrodes on the film surface. Furthermore, the achievable current level can be conveniently controlled by varying the relative directions of the initial polarization and the applied field.PostprintPeer reviewe

    Functional roles of Arabidopsis CKRC2/YUCCA8 gene and the involvement of PIF4 in the regulation of auxin biosynthesis by cytokinin

    Get PDF
    Auxin and cytokinin (CK) are both important hormones involved in many aspects of plant growth and development. However, the details of auxin biosynthesis and the interaction between auxin and CK are still unclear. Isolation and characterization of an auxin deficient mutant cytokinin induced root curling 2 (ckrc2) in this work reveal that CKRC2 encodes a previously identified member of YUCCA (YUC) flavin monooxygenase-like proteins (YUC8). Our results show that, like other YUCs, CKRC2/YUC8 is a rate-limiting enzyme for catalyzing the conversion of indole-3-pyruvic acid (IPyA) to indole-3-acetic acid (IAA), acting downstream of CKRC1/TAA1 in the IPyA pathway. Here we show that the transcription of both CKRC1/TAA and CKRC2/YUC8 can be induced by CK and that the phytochrome-interacting factor 4 (PIF4) is required for this upregulation. Transcription of PIF4 itself is induced by CK via the AHKs-ARR1/12 signalling pathway. These results indicate that PIF4 plays an essential role in mediating the regulatory effect of CK on the transcriptions of CKRC1 and CKRC2 genes in the IPyA pathway of auxin biosynthesis
    corecore