12 research outputs found

    Smart green infrastructure in a smart city – the case study of ecosystem services evaluation in Krakow based on i-Tree Evo software

    Get PDF
    It is a common perception that urban greenery does not bring any rational benefits, while profits from real estates are obvious. Therefore, the cities green infrastructure (urban forests, parks, trees, lawns, meadows, etc.) are constantly threatened with housing and development. However, urban greenery plays a substantial role in improving the quality of urbanites’ life, which is particularly significant in terms of predicted 70% urbanization rate by 2050. Healthy and well managed city green infrastructure can improve air quality, remove particulate matters (PM) and CO2 sequestrate carbon, cool down temperature or protect against winds. These functions of vegetation are known as ecosystem services (ES). Recognizing the value of ES provided by green infrastructure is crucial for urban planning and management in terms of assuring sustainable urban development. In our study we used the i-Tree Eco (USDA Forest Service) software, which quantifies vegetation structure, environmental effects and values of ES. The i-Tree Eco model is based on air pollution and local meteorological data along with the field data from inventory of city vegetation. Requiring easy to collect (e.g. based on LiDAR 3D point clouds) input data and having user-friendly interface, the i-Tree Eco has a potential of becoming a very useful tool for planners and managers in their everyday work. In this paper we present a case study of ES evaluation for the “Krakowski Park” in Krakow (582 trees on 4.77 hectares, with domination of Fraxinus excelsior, Ulmus laevis and Betula pendula). For the analysed 2015 year, the Krakowski Park trees stored in total 441.59 t of carbon, removed 184 kg of air pollutants and contributed to 220 m3 of avoided runoff. Total value of ecosystem services provided by the Krakowski Park in year 2015 was EUR 5.096 (EUR 8.76 tree/year). In our further work we intend to expand the ES evaluation on other green areas in Krakow and on a wider range of ES

    Methods of Landscape Valorization and Possibilities of Its Application in Hunting Area Categorisation

    Get PDF
    As a result of environmental changes, assessment indexes for the agricultural landscape have been changing dramatically. Being at the interface of human activity and the natural environment, hunting is particularly sensitive to environmental changes, such as increasing deforestation or large-scale farming. The classical categorisation of hunting grounds takes into account the area, forest cover, number of forest complexes, fertility of forest habitats, lack of continuity of areas potentially favourable to wild animals. Landscape assessment methods used in architecture often better reflect the actual breeding and hunting value of a given area, especially in relation to fields and forests. The forest-field mosaic, large spatial fragmentation as well as interweaving of natural environment elements with buildings do not have to be the factors that limit the numbers of small game. Identification of the constituents of architectural-landscape interiors: content and significance assessment, determination of the functional role or assessment based on the general environmental values being represented take into account factors important for the existence of game, in particular small game

    Using LiDAR point clouds in active protection of forest lichen communities in "Bory Tucholskie" National Park

    Get PDF
    Zespół boru chrobotkowego (Cladonio-Pinetum) jest zbiorowiskiem wykształcającym się na suchych i ubogich w biogeny obszarach piaszczystych. Najlepiej zachowane płaty tego zbiorowiska roślinnego w Europie występują w Polsce północnej, w tym na terenie Parku Narodowego "Bory Tucholskie" (PNBT). Celem badań było określenie struktury przestrzennej wybranych drzewostanów sosnowych PNBT, w których zainicjowany został program ochronny czynnej borów chrobotkowych. Obszar badań obejmował część dwóch oddziałów leśnych PNBT z wydzieleniami: 18c, 19d, 19g, 19h, 19i, 19j i 19k. Badania przeprowadzono z wykorzystaniem lotniczego (ALS) i naziemnego (TLS) skanowania laserowego (LiDAR). Dzięki zastosowaniu technologii LiDAR możliwe było wykonanie bardzo precyzyjnego opisu struktury drzewostanów w przestrzeni 2D i 3D. W wyniku przeprowadzonych analiz określono szereg cech taksacyjnych i parametrów drzewostanów, takich jak: liczba i zagęszczenie drzew w drzewostanie, średnia odległość pomiędzy drzewami żywymi, liczba drzew martwych, pierśnicowe pole przekroju drzew żywych, zwarcie poziome koron, wskaźnik penetracji koron, wysokość górna drzew w wydzieleniu, wysokość podstawy korony drzewa, długość korony drzewa, objętość warstwy koron, powierzchnia 2D i 3D koron drzew, średni promień korony, współczynnik morfometryczny koron oraz zasięg pionowy martwych gałęzi. Opracowano także mapę występowania luk w wydzieleniach o powierzchni większej niż 2 m2. Badania rozpoczęte w 2017 roku są kontynuowane w 2018 roku z wykorzystaniem skanowania z platformy BSP (UAS) oraz TLS, które posłużą precyzyjnej ocenie zmian struktury przestrzennej drzewostanów, w których przeprowadzono cięcia prześwietleniowe.Forest lichen communities develop on dry and poor in biogens sandy areas. The center of occurrence of this plant community in Europe coincides with Natura 2000 sites located in Poland, including the Bory Tucholskie National Park (BT NP). The aim of the study was to determine the spatial structure of selected Scots pine stands of BT NP, where a program of active protection of lichen communities was initiated. The research area included two forest compartments: 18 and 19. The analysis was performed in the following sub-compartments: 18c, 19d, 19g, 19h, 19i, 19j and 19 k. The research was carried out using airborne (ALS) and terrestrial (TLS) laser scanning (LiDAR). Thanks to the use of LiDAR technology, it was possible to make a very precise description of the structure of stands in 2D and 3D space. As a result of the conducted study, a number of stand parameters have been defined, such as: number of trees, tree density in the stand, number of live trees, average distance between living trees, number of dead trees, basal area, horizontal cover of tree crowns, crown penetration ratio, average height of trees, height of the crown base, tree crown length, crown layer volume, 2D and 3D crown surface, average crown radius, canopy relief ration and vertical range of dead branches. A map of crown gaps with an area of more than 2 m2 was also developed. Research activities with the use of laser scanning technology is continued in 2018 (repeated ALS and TLS scanning). The conducted research will allow to determine the influence of the stand structure on factors influencing the occurrence of lichens, including: shaping of microclimatic conditions

    Monitoring 3D Changes in Urban Forests Using Landscape Metrics Analyses Based on Multi-Temporal Remote Sensing Data

    No full text
    Rapid urbanization is causing changes in green spaces and ecological connectivity. So far, urban ecosystem research has mainly focused on using landscape metrics (LM) in two-dimensional (2D) space. Our study proposes three-dimensional (3D) measures of urban forests (UF) and LM calculations using LiDAR technology. First, we estimated the UF volume of Krakow (Poland) and the distribution of vegetation (low, medium, high) using a voxel-based GEOBIA approach based on the ALS LiDAR point cloud, satellite imagery, and aerial orthophotos at specific timestamps: 2006, 2012, 2017. Then, the appropriate landscape metrics were selected (NP, AREA_MN, CONTIG_MN, LPI, PARA_MN, SPLIT, MESH, PD, DIVISION, LSI) to quantify the differences between the 2D- and 3D-derived vegetation structures and detect changes in the urban landscape. The results showed that areas with low vegetation decreased due to the expansion of built-up areas, while areas with medium and high vegetation increased in Krakow between 2006, 2012, and 2017. We have shown that the lack of information on the vertical features of vegetation, i.e., 2D greenery analysis, leads to an overestimation of landscape connectivity. In the 3D vegetation classes, it was observed that low vegetation was the best connected, followed by high vegetation, while medium vegetation was dispersed in the city space. These results are particularly relevant for the urban environment, where the distribution of green space is crucial for the provision of ecosystem services

    Monitoring of urban forests using 3D spatial indices based on LiDAR point clouds and voxel approach

    Full text link
    Modern cities face challenges in responding to the needs of diverse groups, therefore urban space must be appropriately shaped to be as resident-friendly as possible. Particular attention needs to be paid to urban vegetation, which is an essential component of a suitable quality of life. Research to date has often relied on two- dimensional (2D) mapping of urban vegetation using remote sensing imagery and vegetation indicators, where greenery is evenly distributed regardless of the cubature. However, in reality, vegetation’s spatial and vertical structure varies, and the layers often overlap. In the current paper concerning Luxembourg City, we propose a novel 3D method exploring such indices as Vegetation 3D Density (V3DI) and Vegetation Volume to Building Volume (VV2BV). The goal of the study is to investigate the spatial relationship between the volume of vege- tation and of buildings in the rapidly developing Luxembourg City. The vegetation volume was calculated using airborne laser scanning point clouds (ALS LiDAR) processed into voxels (0.5 m). The volume of the buildings was calculated based on the results of 3D ALS LiDAR point cloud modelling. Proposed spatial indices were estimated for districts, for cadastral parcels, in a cell grid of 100 m and for each building individually, using a 100 m buffer. We found that in 2019, urban forests covered 1689 ha of Luxembourg City, accounting for 33 per cent of the entire administrative area. The 3D GIS analyses show that the total volume of vegetation (> 1.0 m above ground) was about 40 million m3, equating to 328 m3 of greenery per resident. The V3DI produced a value of 0.77 m3/m2. The overall VV2BV(%) index calculated for Luxembourg was 41.6 per cent. Only five districts of Luxembourg were characterized by a high value for the VV2BV index, which indicates areas with a high level of green infrastructure to contribute to health and a better quality of life

    Use of Bi-Temporal ALS Point Clouds for Tree Removal Detection on Private Property in Racibórz, Poland

    No full text
    Trees growing on private property have become an essential part of urban green policies. In many places, restrictions are imposed on tree removal on private property. However, monitoring compliance of these regulations appears difficult due to a lack of reference data and public administration capacity. We assessed the impact of the temporary suspension of mandatory permits on tree removal, which was in force in 2017 in Poland, on the change in urban tree cover (UTC) in the case of the municipality of Racibórz. The bi-temporal airborne laser scanning (ALS) point clouds (2011 and 2017) and administrative records on tree removal permits were used for analyzing the changes of UTC in the period of 2011–2017. The results show increased tree removal at a time when the mandatory permit was suspended. Moreover, it appeared that most trees on private properties were removed without obtaining permission when it was obligatory. The method based on LiDAR we proposed allows for monitoring green areas, including private properties
    corecore