57 research outputs found

    Luminescent and scintillation properties of Ce3+ doped Ca2RMgScSi3O12 (R = Y, Lu) single crystalline films

    No full text
    The work is dedicated to the growth and investigation of the luminescent and scintillation properties of single crystalline films (SCFs) of Ca2-xR1+xMg1+xSc1-xSi3O12:Ce (R = Y, Lu) mixed garnets with x = 0-0.25, grown using the liquid phase epitaxy method onto Y3Al5O12 substrates from PbO-B2O3 based flux. The absorption, luminescent and scintillation properties of Ca2-xY1+xMg1+xSc1-xSi3O12:Ce and Ca2-xLu1+xMg1+xSc1-xSi3O12:Ce SCFs with x = 0 and 0.25 were investigated and compared with the reference YAG:Ce and LuAG:Ce SCFs. Using the Ca2+, Mg2+ and Si4+ alloying, the Ce3+ emission spectra in Ca2-xR1+xMg1+xSc1-xSi3O12:Ce (R = Y, Lu; x = 0-0.25) SCFs can be notably extended in the red range in comparison with YAG: Ce and LuAG: Ce SCFs due to the increase of crystal field strength and Ce3+ multicenter creation in the dodecahedral positions of the lattices of these mixed garnet compounds. Due to the formation of Ce4+ ions, the as-grown Ca2-xR1+xMg1+xSc1-xSi3O12:Ce (R = Y, Lu) SCFs at x = 0 and 0.25 show relatively low light yield. However, after annealing in reducing atmosphere (95% N-2 + 5% H-2) at T > 1000 degrees C, a recharging Ce4+ -> Ce3+ takes place. After that, these SCFs possess the light yield about of 30% and 31% in comparison with the reference YAG: Ce and LuAG: Ce SCFs, respectively, and a fast scintillation response with the decay times in the ns range under a-particles excitation by Pu-239 (5.15 MeV) source

    The investigation of YAlO3-NdAlO3 system, synthesis and characterization

    Full text link
    The binary phase diagram of the YAlO3 (YAP) - NdAlO3 (NAP) system was determined by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) measurements. High purity nanocrystalline powders and small single crystals of Y_{1-x}Nd_{x}AlO_3 (0 \leq x \leq 1) have been produced successfully by modified sol-gel (Pechini) and micro-pulling-down methods, respectively. Both end members show high mutual solubility >25% in the solid phase, with a miscibility gap for intermediate compositions. A solid solution with x \approx 0.2 melts azeotropic ca. 20 degrees below pure YAP. Such crystals can be grown from the melt without segregation. The narrow solid/liquid region near the azeotrope point could be measured with a "cycling" DTA measurement technique.Comment: 12 pages, 8 figures, submitted to J. Alloys. Comp

    Effect of Manganese Concentration on Thermoluminescent Properties of YAlO3:MnYAlO_{3}:Mn Crystals

    No full text
    This work is devoted to experimental study of the effect of manganese concentration on thermoluminescent properties of YAlO3:MnYAlO_{3}:Mn crystals grown by the Czochralski method. A new type of emitting centers beside of Mn4+Mn^{4+} and Mn2+Mn^{2+} ions was revealed at low concentration of manganese ions in the crystal. These centers are responsible for the high-temperature thermoluminescent peak at 570 K. A potential of this thermoluminescent peak for thermoluminescence dosimetry application is discussed

    In situ Investigation of OH−OH^{-} Absorption in LiNbO3LiNbO_{3} and LiNbO3:MgOLiNbO_{3}:MgO Crystals during Reducing/Oxidizing Annealing

    No full text
    The work presents experimental results of an in situ investigation of the OH−OH^{-} absorption in pure and MgO-doped LiNbO3LiNbO_{3} crystals during reducing (95% Ar + 5% H2H_{2}) and oxidizing (O2)(O_{2}) high-temperature treatments in the temperature range from room temperature to 820 K. The absorption spectra measured in situ at high temperatures in reducing/oxidizing atmospheres have been analyzed. The origin of the changes in optical absorption caused by heating of the crystal is discussed in terms of the OH-bonds orientation change
    • …
    corecore