42 research outputs found

    Predicting the future:Clinical outcome prediction with machine learning in neuropsychiatry

    Get PDF
    Treatment of psychiatric disorders relies on subjective measures of symptoms to establish diagnoses and lacks an objective way to determine which treatments might work best for an individual patient. To improve the current state-of-the-art and to be able to help a growing number of patients with mental health disorders more efficiently, the discovery of biomarkers predictive of treatment outcome and prognosis is needed. In addition, the application of machine learning methods provides an improvement over the standard group-level analysis approach since it allows for individualized predictions. Machine learning models can also be tested for their generalization capabilities to new patients which would quantify their potential for clinical applicability. In this thesis, these approaches were combined and investigated across a set of different neuropsychiatric disorders. The investigated applications included the prediction of disease course in patients with anxiety disorders, early detection of behavioural frontotemporal dementia in at-risk individuals using structural magnetic resonance imaging (MRI), prediction of deep-brain stimulation treatment-outcome in patients with therapy-resistant obsessive compulsive disorder using structural MRI and prediction of treatment-response for adult and youth patients with posttraumatic stress disorder using resting-state functional MRI scans. Across all studies this thesis showed that machine learning methods combined with neuroimaging data can be utilized to identify biomarkers predictive of future clinical outcomes in neuropsychiatric disorders. Promising as it seems, this can only be the first step for the inclusion of these new approaches into clinical practice as further studies utilizing larger sample sizes are necessary to validate the discovered biomarkers

    Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters

    Get PDF
    No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker

    Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning

    Get PDF
    Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size, and have limited clinical relevance. These concerns have prompted a paradigm shift towards highly powered (i.e., big data) individual-level inferences, which are data-driven, transdiagnostic, and neurobiologically informed. Hence, we uniquely built/validated supervised neuroanatomical machine learning (ML) models for individual-level inferences, using the largest up to date neuroimaging database on youth anxiety disorders: ENIGMA Anxiety Consortium (N=3,343; Age: 10-25 years; Global Sites: 32). Modest, yet robust, brain-based classifications were achieved for specific anxiety disorders (Panic Disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status, and symptom severity (AUC’s 0.59-0.63). Classifications were driven by neuroanatomical features (cortical thickness/surface area, subcortical volumes) in fronto-striato-limbic and temporo-parietal regions. This benchmark study provides estimates on individual-level classification performances that can be realistically achieved with ML using neuroanatomical data, within a large, heterogenous, and multi-site sample of youth with anxiety disorders

    Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning

    Get PDF
    Neuroanatomical findings on youth anxiety disorders are notoriously difficult to replicate, small in effect size and have limited clinical relevance. These concerns have prompted a paradigm shift toward highly powered (that is, big data) individual-level inferences, which are data driven, transdiagnostic and neurobiologically informed. Here we built and validated supervised neuroanatomical machine learning models for individual-level inferences, using a case–control design and the largest known neuroimaging database on youth anxiety disorders: the ENIGMA-Anxiety Consortium (N = 3,343; age = 10–25 years; global sites = 32). Modest, yet robust, brain-based classifications were achieved for specific anxiety disorders (panic disorder), but also transdiagnostically for all anxiety disorders when patients were subgrouped according to their sex, medication status and symptom severity (area under the receiver operating characteristic curve, 0.59–0.63). Classifications were driven by neuroanatomical features (cortical thickness, cortical surface area and subcortical volumes) in fronto-striato-limbic and temporoparietal regions. This benchmark study within a large, heterogeneous and multisite sample of youth with anxiety disorders reveals that only modest classification performances can be realistically achieved with machine learning using neuroanatomical data.NWORubicon 019.201SG.022Advanced Behavioural Research MethodsHealth and Well-bein

    Connectivity networks in gambling disorder: a resting-state fMRI study

    Get PDF
    Gambling disorder (GD) is characterized by an inability to stop or control gambling behaviour and is often accompanied by gambling- related cognitive distortions. Task-based functional Magnetic Resonance Imaging (fMRI) studies have revealed abnormal responses within the prefrontal and insular cortex, and mesolimbic reward regions. Studies examining resting-state functional connectivity in GD, although limited in number, have so far applied seed-based analysis approaches which revealed altered brain functioning. Here, we applied data-driven Independent Components Analysis to resting-state multi-echo fMRI data. Networks of interest were selected by spatially correlating them to independently derived network templates. Using dual regression, we compared connectivity strength between 20 GD patients and 20 healthy controls within 4 well-known networks (the ventral attention, limbic, frontoparietal control, and default mode network) and an additional basal ganglia component. Compared to controls, GD patients showed increased integration of the right middle insula within the ventral attention network, an area suggested to play an important role in addiction- related drive. Moreover, our findings indicate that gambling-related cognitive distortions – a hallmark of GD – were positively related to stronger integration of the amygdala, medial prefrontal cortex and insula within various resting-state networks

    Structural neuroimaging biomarkers for obsessive-compulsive disorder in the ENIGMA-OCD consortium: medication matters

    Get PDF
    No diagnostic biomarkers are available for obsessive-compulsive disorder (OCD). Here, we aimed to identify magnetic resonance imaging (MRI) biomarkers for OCD, using 46 data sets with 2304 OCD patients and 2068 healthy controls from the ENIGMA consortium. We performed machine learning analysis of regional measures of cortical thickness, surface area and subcortical volume and tested classification performance using cross-validation. Classification performance for OCD vs. controls using the complete sample with different classifiers and cross-validation strategies was poor. When models were validated on data from other sites, model performance did not exceed chance-level. In contrast, fair classification performance was achieved when patients were grouped according to their medication status. These results indicate that medication use is associated with substantial differences in brain anatomy that are widely distributed, and indicate that clinical heterogeneity contributes to the poor performance of structural MRI as a disease marker
    corecore