158 research outputs found

    Neutrino magnetic moment in a magnetized plasma

    Full text link
    The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.Comment: 7 page, 1 figures, based on the talk presented by E.N.Narynskaya at the XVI International Seminar Quarks'2010, Kolomna, Moscow Region, June 6-12, 2010, to appear in the Proceeding

    Structural and transport characteristics of substituted bismuth niobates

    Full text link
    The results of studying solid solutions with the composition of Bi 3Nb1 - y Zr y O7 ± δ, Bi2.95Y0.05Nb1 - y Zr y O 7 ± δ (y = 0-0.5; Δy = 0.1), and Bi 6.95Y0.05Nb2 - y Zr y O 15.5 (y = 0.1-1; Δy = 0.1) are presented. XRD and electron microscopy with X-ray microanalysis are used to determine the homogeneity regions of solid solutions; crystallochemical parameters are calculated. It is shown that irrespective of the ratio of Bi: Nb, two cubic phases are formed at an increase in the dopant amount. One of these represents a solid solution based on Bi3NbO7 (δ-phase) and the second one is a solid solution based on δ-Bi2O3 (δ′-phase). Conductivity of sintered samples is studied using the impedance spectroscopy technique. Introduction of yttrium into the bismuth sublattice results in no increase in conductivity of solid solutions, while in the case of the ratio of Bi: Nb = 3: 1, overall conductivity of solid solutions is somewhat higher at similar dopant concentrations. © 2013 Pleiades Publishing, Ltd

    Electrochemical characteristics, thermal and chemical compatibility in the La0.7Sr0.3CoO3 electrode-γ-BIFEVOX electrolyte system

    Full text link
    The electrochemical characteristics and compatibility of components of the electrode-electrolyte system, where the electrolyte is chosen to be γ-BIFEVOX compositions crystallizing in a stable tetragonal phase and the cathode material is chosen to be composite electrodes of composition La 0.7Sr0.3CoO3 + Bi4V 1.7Fe0.3O11-δ, were studied. © 2013 Pleiades Publishing, Ltd

    Systems of Hess-Appel'rot Type and Zhukovskii Property

    Full text link
    We start with a review of a class of systems with invariant relations, so called {\it systems of Hess--Appel'rot type} that generalizes the classical Hess--Appel'rot rigid body case. The systems of Hess-Appel'rot type carry an interesting combination of both integrable and non-integrable properties. Further, following integrable line, we study partial reductions and systems having what we call the {\it Zhukovskii property}: these are Hamiltonian systems with invariant relations, such that partially reduced systems are completely integrable. We prove that the Zhukovskii property is a quite general characteristic of systems of Hess-Appel'rote type. The partial reduction neglects the most interesting and challenging part of the dynamics of the systems of Hess-Appel'rot type - the non-integrable part, some analysis of which may be seen as a reconstruction problem. We show that an integrable system, the magnetic pendulum on the oriented Grassmannian Gr+(4,2)Gr^+(4,2) has natural interpretation within Zhukovskii property and it is equivalent to a partial reduction of certain system of Hess-Appel'rot type. We perform a classical and an algebro-geometric integration of the system, as an example of an isoholomorphic system. The paper presents a lot of examples of systems of Hess-Appel'rot type, giving an additional argument in favor of further study of this class of systems.Comment: 42 page

    Radiative Effects in the Standard Model Extension

    Full text link
    The possibility of radiative effects induced by the Lorentz and CPT non-invariant interaction term for fermions in the Standard Model Extension is investigated. In particular, electron-positron photo-production and photon emission by electrons and positrons are studied. The rates of these processes are calculated in the Furry picture. It is demonstrated that the rates obtained in the framework of the model adopted strongly depend on the polarization states of the particles involved. As a result, ultra-relativistic particles produced should occupy states with a preferred spin orientation, i.e., photons have the sign of polarization opposite to the sign of the effective potential, while charged particle are preferably in the state with the helicity coinciding with the sign of the effective potential. This leads to evident spatial asymmetries which may have certain consequences observable at high energy accelerators, and in astrophysical and cosmological studies.Comment: 10 pages, 2 figures, Revtex4, to appear in Phys.Rev.D, misprints are correcte

    Determination of temperature dependences of Young's modulus and internal friction of fuel cladding by resonance method

    Get PDF
    We study elastic characteristics and internal friction of fuel claddings to improve computer codes for VVER-1000 fuel rods. We analytically described elastic characteristics of cladding material and obtained coefficient of the form of the first longitudinal frequency numerically. We described new measuring module for automatic acquisition data. We’ve established temperature dependences of Young’s modulus and internal friction via high-temperature facility and developed electronic module and noted maximum of these characteristics at the temperature 1160 K. It can be explained by the destruction of the texture in the material of claddings

    Absorption cross section in an intense plane wave background

    Get PDF
    We consider the absorption of probe photons by electrons in the presence of an intense, pulsed, background field. Our analysis reveals an interplay between regularisation and gauge invariance which distinguishes absorption from its crossing-symmetric processes, as well as a physical interpretation of absorption in terms of degenerate processes in the weak field limit. In the strong field limit we develop a locally constant field approximation (LCFA) for absorption which also exhibits new features. We benchmark the LCFA against exact analytical calculations and explore its regime of validity. Pulse shape effects are also investigated, as well as infra-red and collinear limits of the absorption process

    Behavior of Binomial Distribution near Its Median

    No full text
    We study the behavior of the cumulative distribution function of a binomial random variable with parameters n and b/(n+c) at the point b – 1 for positive integers b⩽n and real c∈[0,1]. Our results can be applied directly to the well-known problem about small deviations of sums of independents random variables from their expectations. Moreover, we answer the question about the monotonicity of the Ramanujan function for the binomial distribution posed by Jogdeo and Samuels in 1968
    corecore