281 research outputs found

    Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ трофомСтаболичСской Π΄Π΅ΡΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠ»Π΅ΠΊΠΎΠΏΠΈΡ‚Π°ΡŽΡ‰ΠΈΡ… Π² процСссС самоочистки ΠΏΠΎΡ‡Π² ΠΏΡ€ΠΈ Π°Π½Ρ‚Ρ€ΠΎΠΏΠΎΠ³Π΅Π½Π½ΠΎΠΌ загрязнСнии

    Get PDF
    The influencing of elk and roe deer excrements on radionuckleids migration in the soil horizon under zinc pollution circumstances has been investigated. It is confirmed that mammals excretory activity is an important acting natural ecological factor further radionuckleids quickly redistribution in the soil thus reducing the level of radioactivity and heavy metals ДослідТСно Π²ΠΏΠ»ΠΈΠ² СкскрСцій лося ΠΈ ΠΊΠΎΠ·ΡƒΠ»Ρ– Π½Π° ΠΌΡ–Π³Ρ€Π°Ρ†Ρ–ΡŽ Ρ€Π°Π΄Ρ–ΠΎΠ½ΡƒΠΊΠ»Ρ–Π΄Ρ–Π² ΠΏΠΎ Π³Ρ€ΡƒΠ½Ρ‚ΠΎΠ²ΠΈΡ…Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Ρ… Π·Π° ΡƒΠΌΠΎΠ² Ρ—Ρ… забруднСння Π²Π°ΠΆΠΊΠΈΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π»Π°ΠΌΠΈ. ΠŸΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½ΠΎ, Ρ‰ΠΎ СкскрСторна Π΄Ρ–ΡΠ»ΡŒΠ½Ρ–ΡΡ‚ΡŒ ссавців Ρ” Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈΠΌ Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, Ρ‰ΠΎ сприяє Π±Ρ–Π»ΡŒΡˆ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌΡƒ ΠΏΠ΅Ρ€Π΅Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ Ρ€Π°Π΄Ρ–ΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Ρ–Π² Ρƒ Π³Ρ€ΡƒΠ½Ρ‚Ρ–, Π·ΠΌΠ΅Π½ΡˆΡƒΡŽΡ‡ΠΈ Ρ€Ρ–Π²Π΅Π½ΡŒ радіоактивності Ρ‚Π° Π²ΠΏΠ»ΠΈΠ² Π²Π°ΠΆΠΊΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Ρ–Π².ДослідТСно Π²ΠΏΠ»ΠΈΠ² СкскрСцій лося ΠΈ ΠΊΠΎΠ·ΡƒΠ»Ρ– Π½Π° ΠΌΡ–Π³Ρ€Π°Ρ†Ρ–ΡŽ Ρ€Π°Π΄Ρ–ΠΎΠ½ΡƒΠΊΠ»Ρ–Π΄Ρ–Π² ΠΏΠΎ Π³Ρ€ΡƒΠ½Ρ‚ΠΎΠ²ΠΈΡ…Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Ρ… Π·Π° ΡƒΠΌΠΎΠ² Ρ—Ρ… забруднСння Π²Π°ΠΆΠΊΠΈΠΌΠΈ ΠΌΠ΅Ρ‚Π°Π»Π°ΠΌΠΈ. ΠŸΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½ΠΎ, Ρ‰ΠΎ СкскрСторна Π΄Ρ–ΡΠ»ΡŒΠ½Ρ–ΡΡ‚ΡŒ ссавців Ρ” Π²Π°ΠΆΠ»ΠΈΠ²ΠΈΠΌ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΈΠΌ Π΅ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΠΌ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠΌ, Ρ‰ΠΎ сприяє Π±Ρ–Π»ΡŒΡˆ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠΌΡƒ ΠΏΠ΅Ρ€Π΅Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ Ρ€Π°Π΄Ρ–ΠΎΠ½ΡƒΠΊΠ»ΠΈΠ΄Ρ–Π² Ρƒ Π³Ρ€ΡƒΠ½Ρ‚Ρ–, Π·ΠΌΠ΅Π½ΡˆΡƒΡŽΡ‡ΠΈ Ρ€Ρ–Π²Π΅Π½ΡŒ радіоактивності Ρ‚Π° Π²ΠΏΠ»ΠΈΠ² Π²Π°ΠΆΠΊΠΈΡ… ΠΌΠ΅Ρ‚Π°Π»Ρ–Π²

    Integrable Multicomponent Perfect Fluid Multidimensional Cosmology II: Scalar Fields

    Get PDF
    We consider anisotropic cosmological models with an universe of dimension 4 or more, factorized into n>1 Ricci-flat spaces, containing an m-component perfect fluid of m non-interacting homogeneous minimally coupled scalar fields under special conditions. We describe the dynamics of the universe: It has a Kasner-like behaviour near the singularity and isotropizes during the expansion to infinity. Some of the considered models are integrable, and classical as well as quantum solutions are found. Some solutions produce inflation from "nothing". There exist classical asymptotically anti-de Sitter wormholes, and quantum wormholes with discrete spectrum.Comment: 28 pages, LaTeX, subm. to Gen. Rel. Gra

    Woodworking facilities: Driving efficiency through Automation applied to major process steps

    Get PDF
    The investment scenario applied to forestry development analyzes the fundamental changes in the production structure, among other things. These changes refer to the priority development of the pulp and paper industry through the chain of large-scale woodworking facilities, where pulp, paper and cardboard manufacturing plants are the key links. Such facilities include sawmilling facilities, wood-processing factories, and timber factories. Those provide a significant economic benefit, so improving them is one of the top priorities. Considering this priority is the purpose of this article. The goal was achieved using common and scientific research methods, including mathematical modeling. Theoretical research resulted in three sets of formulas adapted for evaluating the pulpwood barking from theoretical findings on image recognition. Β© 2018 Authors

    On new gravitational instantons describing creation of brane-worlds

    Get PDF
    By considering 5--dimensional cosmological models with a bulk filled with a pressureless scalar field; equivalently dust matter, and a negative cosmological constant, we have found a regular instantonic solution which is free from any singularity at the origin of the extra--coordinate. This instanton describes 5--dimensional asymptotically anti de Sitter wormhole, when the bulk has a topology R times S^4. Compactified brane-world instantons which are built up from such instantonic solution describe either a single brane or a string of branes. Their analytical continuation to the pseudo--Riemannian metric can give rise to either 4-dimensional inflating branes or solutions with the same dynamical behaviour for extra--dimension and branes, in addition to multitemporal solutions. Dust brane-world models with arbitrary dimensions (D >= 5) as well as other spatial topologies are also briefly discussed.Comment: 11 pages, 3 figures, LaTeX2e, accepted for publication in Classical and Quantum Gravit

    Acceleration from M theory and Fine-tuning

    Full text link
    The compactification of M theory with time dependent hyperbolic internal space gives an effective scalar field with exponential potential which provides a transient acceleration in Einstein frame in four dimensions. Ordinary matter and radiation are present in addition to the scalar field coming from compactification. We find that we have to fine-tune the initial conditions of the scalar field so that our Universe experiences acceleration now. During the evolution of our Universe, the volume of the internal space increases about 12 times. The time variation of the internal space results in a large time variation of the fine structure constant which violates the observational constraint on the variation of the fine structure constant. The large variation of the fine structure constant is a generic feature of transient acceleration models.Comment: 9 pages, 3 figures, use iopart, v2; references updated, accepted for publication in Class. Quantum Gra

    Slow-roll inflation in (R+R*4) gravity

    Full text link
    We reconsider the toy-model of topological inflation, based on the R*4-modified gravity. By using its equivalence to the certain scalar-tensor gravity model in four space-time dimensions, we compute the inflaton scalar potential and investigate a possibility of inflation. We confirm the existence of the slow-roll inflation with an exit. However, the model suffers from the eta-problem that gives rise to the unacceptable value of the spectral index n_s of scalar perturbations.Comment: 12 pages, 3 figures, LaTeX, misprints corrected and references update

    ΠžΡΠ½ΠΎΠ²Ρ‹ Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ° Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ Π² Π±ΠΎΡ€Ρ‚ΠΎΠ²ΠΎΠΌ Ρ‚Ρ€Π΅Π½Π°ΠΆΠ΅Ρ€Π½ΠΎΠΌ комплСксС самолСта Π›-39

    Get PDF
    Π’ΠΈΠΊΠ»Π°Π΄Π΅Π½Ρ– основи Ρ€Π΅Π°Π»Ρ–Π·Π°Ρ†Ρ–Ρ— Ρ€Π΅ΠΆΠΈΠΌΡƒ Π½Π°Π²Ρ–Π³Π°Ρ†Ρ–Ρ— Π² Π±ΠΎΡ€Ρ‚ΠΎΠ²ΠΎΠΌΡƒ Ρ‚Ρ€Π΅Π½Π°ΠΆΠ΅Ρ€Π½ΠΎΠΌΡƒ комплСксі ΠΏΡ–Π΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ Π»ΡŒΠΎΡ‚Ρ‡ΠΈΠΊΡ–Π², який ΠΏΡ€ΠΈΠ·Π½Π°Ρ‡Π°Ρ”Ρ‚ΡŒΡΡ для встановлСння Π½Π° ΡƒΡ‡Π±ΠΎΠ²ΠΎ-Ρ‚Ρ€Π΅Π½ΡƒΠ²Π°Π»ΡŒΠ½ΠΎΠΌΡƒ Π»Ρ–Ρ‚Π°ΠΊΡƒ Π›-39. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ– Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈ обчислСння основних Π½Π°Π²Ρ–Π³Π°Ρ†Ρ–ΠΉΠ½ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² для Ρ€Π΅ΠΆΠΈΠΌΡƒ ΠΏΠΎΠ»ΡŒΠΎΡ‚Ρƒ Π·Π° Π·Π°Π΄Π°Π½ΠΈΠΌ ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚ΠΎΠΌ Π² Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Ρ– Π»Ρ–Ρ‚Π°ΠΊΡ–Π² Ρ‚ΠΈΠΏΡƒ ΠœΡ–Π“-29 (Π‘Ρƒ-27).Fundamentals of realization the mode of navigation in the airborne simulating complex for military pilots training, which was developed for a placing on the trainer L-39. Calculation formulae of main navigation parameters for a flight mode on the given route in the military aircraft MiG-29 (Su-27) format is given.Π˜Π·Π»ΠΎΠΆΠ΅Π½Ρ‹ основы Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρ€Π΅ΠΆΠΈΠΌΠ° Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΈ Π² Π±ΠΎΡ€Ρ‚ΠΎΠ²ΠΎΠΌ Ρ‚Ρ€Π΅Π½Π°ΠΆΠ΅Ρ€Π½ΠΎΠΌ комплСксС ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ Π»Π΅Ρ‚Ρ‡ΠΈΠΊΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½ для установки Π½Π° ΡƒΡ‡Π΅Π±Π½ΠΎ-Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠΌ самолСтС Π›-39. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ вычислСния основных Π½Π°Π²ΠΈΠ³Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² для Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΏΠΎΠ»Π΅Ρ‚Π° ΠΏΠΎ Π·Π°Π΄Π°Π½Π½ΠΎΠΌΡƒ ΠΌΠ°Ρ€ΡˆΡ€ΡƒΡ‚Ρƒ Π² Ρ„ΠΎΡ€ΠΌΠ°Ρ‚Π΅ самолСтов Ρ‚ΠΈΠΏΠ° ΠœΠΈΠ“-29 (Π‘Ρƒ-27)

    Π’Π·Π°Ρ”ΠΌΠΎΠ·Π²'язок ΠΌΡ–ΠΆ загальними Ρ‚Π° Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Π²ΠΎΠ΄ΠΎΠ½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΈΠΌΠΈ покриттями ΠΏΡ–Π΄ час модСлювання Π΄ΠΎΡ‰ΠΎΠ²ΠΎΠ³ΠΎ водовідвСдСння

    Get PDF
    The paper presents a case study for the residential quarter at Shyroka Street in Lviv City. The importance of the division of the general impervious covers onto the directly connected to the urban drainage network (effective) impervious surfaces and unconnected impervious surfaces is confirmed in the paper. Using the results of the researches in Denver City and Marion County (USA), generalized power-law dependences between the effective imperviousness peff and the total imperviousness Ρ€tot are obtained. The investigation of the distribution of cover types for residential quarter at Shyroka Street in Lviv City was performed using three methods: the analysis of the surface type distribution on the basis of satellite images of the terrain (method No. 1); field survey of the territory of the quarter with the specification of the boundaries of different cover types (method No. 2); field survey with the establishment of the peculiarities of the connection of different sites to the centralized drainage network (method No. 3). The share of the total impervious covers, obtained by the method No. 2 ptot =0.546, is equal within the error range to the result ptot =0.541, obtained by the method # 1. The share of the effective impervious covers, peff =0.394, obtained by the method # 3 is 1.39 times less than the share of total impervious covers in the quarter ptot=0.546. The value of the general runoff coefficient is almost the same using the methods No. 1 and No. 2 (ψ0=0.494 and ψ0=0.496 respectively), instead much less value ψ0=0.427 is obtained in the method No. 3. In a result of a full-scale survey of the residential quarter in Lviv City, the effective imperviousness is peff = 0.394. This value is 1.08 times less comparing to the result of calculation using the power-law formula for Denver City and 1.18 times less comparing to the formula for Marion County. It is necessary to gain the similar results of field investigation for at least 20 quarters in order to obtain reliable power-law dependence between the effective and total imperviousness for Lviv City.На ΠΏΡ€ΠΈΠΊΠ»Π°Π΄Ρ– ΠΆΠΈΡ‚Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ²Π°Ρ€Ρ‚Π°Π»Ρƒ ΠΏΠΎ Π²ΡƒΠ». Π¨ΠΈΡ€ΠΎΠΊΡ–ΠΉ Ρƒ Π›ΡŒΠ²ΠΎΠ²Ρ– ΠΏΡ–Π΄Ρ‚Π²Π΅Ρ€Π΄ΠΆΠ΅Π½ΠΎ Π²Π°ΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ ΠΏΠΎΠ΄Ρ–Π»Ρƒ Π·Π°Π³Π°Π»ΡŒΠ½ΠΈΡ… Π²ΠΎΠ΄ΠΎΠ½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΈΡ… ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Π½Π° напряму ΠΏΡ€ΠΈΡ”Π΄Π½Π°Π½Ρ– Π΄ΠΎ ΠΌΡ–ΡΡŒΠΊΠΎΡ— ΠΊΠ°Π½Π°Π»Ρ–Π·Π°Ρ†Ρ–ΠΉΠ½ΠΎΡ— ΠΌΠ΅Ρ€Π΅ΠΆΡ– (Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–), Π²ΠΎΠ΄ΠΎΠ½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½Ρ– покриття Ρ‚Π° Π½Π΅ ΠΏΡ€ΠΈΡ”Π΄Π½Π°Π½Ρ– Π²ΠΎΠ΄ΠΎΠ½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½Ρ– покриття. На підставі Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ‚Π° ΡƒΠ·Π°Π³Π°Π»ΡŒΠ½Π΅Π½Π½Ρ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² дослідТСння ΠΌΡ–ΠΊΡ€ΠΎΡ€Π°ΠΉΠΎΠ½Ρ–Π² Π”Π΅Π½Π²Π΅Ρ€Π° (БША) (Alley & Veenhuis, 1983) Ρ‚Π° Ρ‚Π΅Ρ€ΠΈΡ‚ΠΎΡ€Ρ–Ρ— ΠœΠ°Ρ€Ρ–ΠΎΠ½ ΠšΠ°ΡƒΠ½Ρ‚Ρ– (БША) (Yang et all., 2011) ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ ΡƒΠ·Π°Π³Π°Π»ΡŒΠ½Π΅Π½Ρ– стСпСнСві залСТності частки Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Π²ΠΎΠ΄ΠΎΠ½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΈΡ… ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Ρ€eff Π²Ρ–Π΄ частки Π·Π°Π³Π°Π»ΡŒΠ½ΠΈΡ… Π²ΠΎΠ΄ΠΎΠ½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΈΡ… ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Ρ€tot. Для ΠΆΠΈΡ‚Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ²Π°Ρ€Ρ‚Π°Π»Ρƒ ΠΏΠΎ Π²ΡƒΠ». Π¨ΠΈΡ€ΠΎΠΊΡ–ΠΉ Ρƒ ΠΌ. Π›ΡŒΠ²ΠΎΠ²Ρ– Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΎ дослідТСння Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ Ρ‚ΠΈΠΏΡ–Π² покриття Π·Π° Ρ‚Ρ€ΡŒΠΎΠΌΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ: ΠΊΠ°ΠΌΠ΅Ρ€Π°Π»ΡŒΠ½ΠΈΠΉ Π°Π½Π°Π»Ρ–Π· Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ ΠΏΠΎΠ²Π΅Ρ€Ρ…ΠΎΠ½ΡŒ Π·Π° Ρ‚ΠΈΠΏΠ°ΠΌΠΈ покриття Π½Π° Π±Π°Π·Ρ– супутникових Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΡŒ місцСвості; Π½Π°Ρ‚ΡƒΡ€Π½Π΅ обстСТСння Ρ‚Π΅Ρ€ΠΈΡ‚ΠΎΡ€Ρ–Ρ— ΠΊΠ²Π°Ρ€Ρ‚Π°Π»Ρƒ Π· уточнСнням ΠΌΠ΅ΠΆ ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Ρ€Ρ–Π·Π½ΠΈΡ… Ρ‚ΠΈΠΏΡ–Π²; Π½Π°Ρ‚ΡƒΡ€Π½Π΅ обстСТСння Π·Ρ– встановлСнням особливостСй приєднання Ρ€Ρ–Π·Π½ΠΈΡ… ділянок Π΄ΠΎ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎΡ— ΠΌΠ΅Ρ€Π΅ΠΆΡ– водовідвСдСння. ΠŸΠΎΡ€Ρ–Π²Π½ΡΠ½ΠΎ Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π» ΠΏΠ»ΠΎΡ‰ Ρ–Π· Ρ€Ρ–Π·Π½ΠΈΠΌΠΈ Ρ‚ΠΈΠΏΠ°ΠΌΠΈ покриття Ρ‚Π° значСння загального ΠΊΠΎΠ΅Ρ„Ρ–Ρ†Ρ–Ρ”Π½Ρ‚Π° стоку y0 , ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π·Π° Ρ‚Ρ€ΡŒΠΎΠΌΠ° описаними Π² Ρ€ΠΎΠ±ΠΎΡ‚Ρ– ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Внаслідок провСдСння Π½Π°Ρ‚ΡƒΡ€Π½ΠΎΠ³ΠΎ обстСТСння ΠΆΠΈΡ‚Π»ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ²Π°Ρ€Ρ‚Π°Π»Ρƒ Π›ΡŒΠ²ΠΎΠ²Π° Π·Π° значСння частки Π·Π°Π³Π°Π»ΡŒΠ½ΠΈΡ… Π²ΠΎΠ΄ΠΎΠ½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΈΡ… ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Ρ€tot=0,546 ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎ частку Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Π²ΠΎΠ΄ΠΎΠ½Π΅ΠΏΡ€ΠΎΠ½ΠΈΠΊΠ½ΠΈΡ… ΠΏΠΎΠΊΡ€ΠΈΡ‚Ρ‚Ρ–Π² Ρ€eff=0,394, Ρ‰ΠΎ Π² 1,08 Ρ‚Π° Π² 1,18 Ρ€Π°Π·Π° мСншС, Π½Ρ–ΠΆ Π·Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΠΌΠΈ Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ для Π”Π΅Π½Π²Π΅Ρ€Π° Ρ‚Π° Ρ‚Π΅Ρ€ΠΈΡ‚ΠΎΡ€Ρ–Ρ— ΠœΠ°Ρ€Ρ–ΠΎΠ½ ΠšΠ°ΡƒΠ½Ρ‚Ρ–

    Einstein and Brans-Dicke frames in multidimensional cosmology

    Get PDF
    Inhomogeneous multidimensional cosmological models with a higher dimensional space-time manifold M= M_0 x M_1 ...x M_n are investigated under dimensional reduction to a D_0-dimensional effective non-minimally coupled sigma-model which generalizes the familiar Brans-Dicke model. It is argued that the Einstein frame should be considered as the physical one. The general prescription for the Einstein frame reformulation of known solutions in the Brans-Dicke frame is given. As an example, the reformulation is demonstrated explicitly for the generalized Kasner solutions where it is shown that in the Einstein frame there are no solutions with inflation of the external space.Comment: 27 pages, Revte

    AdS and stabilized extra dimensions in multidimensional gravitational models with nonlinear scalar curvature terms 1/R and R^4

    Full text link
    We study multidimensional gravitational models with scalar curvature nonlinearities of the type 1/R and R^4. It is assumed that the corresponding higher dimensional spacetime manifolds undergo a spontaneous compactification to manifolds with warped product structure. Special attention is paid to the stability of the extra-dimensional factor spaces. It is shown that for certain parameter regions the systems allow for a freezing stabilization of these spaces. In particular, we find for the 1/R model that configurations with stabilized extra dimensions do not provide a late-time acceleration (they are AdS), whereas the solution branch which allows for accelerated expansion (the dS branch) is incompatible with stabilized factor spaces. In the case of the R^4 model, we obtain that the stability region in parameter space depends on the total dimension D=dim(M) of the higher dimensional spacetime M. For D>8 the stability region consists of a single (absolutely stable) sector which is shielded from a conformal singularity (and an antigravity sector beyond it) by a potential barrier of infinite height and width. This sector is smoothly connected with the stability region of a curvature-linear model. For D<8 an additional (metastable) sector exists which is separated from the conformal singularity by a potential barrier of finite height and width so that systems in this sector are prone to collapse into the conformal singularity. This second sector is not smoothly connected with the first (absolutely stable) one. Several limiting cases and the possibility for inflation are discussed for the R^4 model.Comment: 28 pages, minor cosmetic improvements, Refs. added; to appear in Class. Quantum Gra
    • …
    corecore