114 research outputs found

    A new mechanical structural damage feature index based on HHT

    Get PDF
    A new damage feature index is presented for the structural health monitoring based on Hilbert-Huang transform (HHT). The energy marginal spectrum of the dynamic signal is used to construct damage characteristic parameter, which can reflect the signal energy variation and benefit the structural damage detection. A sinusoidal wave with frequency change and a composite plate vibration experiment with pre-defined damage are designed to verify the effectiveness of characteristic parameter in damage detection. Results obtained from simulation and test show that the extracted non-model-based damage feature index is available and sensitive in damage detection of time-varying system.Peer Reviewe

    Electronic Structures of N-doped Graphene with Native Point Defects

    Full text link
    Nitrogen doping in graphene has important implications in graphene-based devices and catalysts. We have performed the density functional theory calculations to study the electronic structures of N-doped graphene with vacancies and Stone-Wales defect. Our results show that monovacancies in graphene act as hole dopants and that two substitutional N dopants are needed to compensate for the hole introduced by a monovacancy. On the other hand, divacancy does not produce any free carriers. Interestingly, a single N dopant at divacancy acts as an acceptor rather than a donor. The interference between native point defect and N dopant strongly modifies the role of N doping regarding the free carrier production in the bulk pi bands. For some of the defects and N dopant-defect complexes, localized defect pi states are partially occupied. Discussion on the possibility of spin polarization in such cases is given. We also present qualitative arguments on the electronic structures based on the local bond picture. We have analyzed the 1s-related x-ray photoemission and adsorption spectroscopy spectra of N dopants at vacancies and Stone-Wales defect in connection with the experimental ones. We also discuss characteristic scanning tunneling microscope (STM) images originating from the electronic and structural modifications by the N dopant-defect complexes. STM imaging for small negative bias voltage will provide important information about possible active sites for oxygen reduction reaction.Comment: 40 pages, 2 tables, 16 figures. The analysis of Clar sextets is added. This version is published on PHYSICAL REVIEW B 87, 165401(2013

    Combined Voronoi-FDEM approach for modelling post-fracture response of laminated tempered glass

    Get PDF
    In this work, a combined Voronoi and finite-discrete element method (FDEM) approach for reconstructing the post-fracture model of laminated glass (LG) was proposed. The fracture morphology was determined via introducing Voronoi tessellation with statistical distribution parameters such as the fragment face numbers, volume and sphericity. The residual interaction between glass fragments was described with cohesive zone model. One fractured LG block under uniaxial tension, which was taken from a triple layered LG beam with ionoplast interlayers, was modelled and validated with experimentally recorded data. Through iteration analysis, the key cohesive parameters were determined for the most applicable model. It is followed by investigating the influence due to the fragments interaction property. The results show that the cohesion and frictional property can be combined to well describe the residual interaction behaviour between fragments. The frictional property has a remarkable effect on the post-fracture resistance whereas the associated effect on the stiffness is not evident. Compared to other cohesive parameters, the cohesive stiffness factors present predominant effect on both the post-fracture stiffness and resistance

    Interplay between Nitrogen Dopants and Native Point Defects in Graphene

    Full text link
    To understand the interaction between nitrogen dopants and native point defects in graphene, we have studied the energetic stability of N-doped graphene with vacancies and Stone-Wales (SW) defect by performing the density functional theory calculations. Our results show that N substitution energetically prefers to occur at the carbon atoms near the defects, especially for those sites with larger bond shortening, indicating that the defect-induced strain plays an important role in the stability of N dopants in defective graphene. In the presence of monovacancy, the most stable position for N dopant is the pyridinelike configuration, while for other point defects studied (SW defect and divacancies) N prefers a site in the pentagonal ring. The effect of native point defects on N dopants is quite strong: While the N doping is endothermic in defect-free graphene, it becomes exothermic for defective graphene. Our results imply that the native point defect and N dopant attract each other, i.e., cooperative effect, which means that substitutional N dopants would increase the probability of point defect generation and vice versa. Our findings are supported by recent experimental studies on the N doping of graphene. Furthermore we point out possibilities of aggregation of multiple N dopants near native point defects. Finally we make brief comments on the effect of Fe adsorption on the stability of N dopant aggregation.Comment: 10 pages, 5 figures. Figure 4(g) and Figure 5 are corrected. One additional table is added. This is the final version for publicatio

    THE EFFECT OF TAI CHI TRAINING ON ANKLE PROPRIOCEPTION IN PARTICIPANTS WITH CHRONIC ANKLE INSTABILITY

    Get PDF
    Objective: To determine the effect of Tai Chi training on ankle proprioception in participants with Chronic Ankle Instability (CAI). Design: Randomized controlled trial. Method: Forty participants with CAI were randomly divided into a Tai Chi group and a control group, with 20 participants in each group. The Tai Chi group underwent 24-styled simplified Tai Chi rehabilitation training 3 times a week for 8 weeks, while the Control group did not undergo any rehabilitation training. The angular displacement of ankle proprioception (kinesthesia) was collected from both groups before and after rehabilitation training for data analysis. Result: After 8 weeks of training, participants in the Tai Chi group showed significant improvement in ankle proprioception (

    Linear Extension Cube Attack on Stream Ciphers

    Get PDF
    Basing on the original Cube attack, this paper proposes an improved method of Cube attack on stream ciphers, which makes improvement on the pre-processing phase of the original attack. The new method can induce maxterms of higher-order from those of lower-order by the trade-off between time and space, thus recovering more key bits and reducing the search complexity on higher-dimension. In this paper, the improved attack is applied to Lili-128 algorithm and reduced variants of Trivium algorithm. We can recover 88 key bits of Lili-128 algorithm within time complexity of 2^14 and 48 key bits of Trivium algorithm can be recovered by cubes with dimension no larger than 8 when the initialization round is 576, the results are much better than those of the original attacks

    Review of γ’ Rafting Behavior in Nickel-Based Superalloys: Crystal Plasticity and Phase-Field Simulation

    Get PDF
    Rafting is an important phenomenon of the microstructure evolution in nickel-based single crystal superalloys at elevated temperature. Understanding the rafting mechanism and its effect on the microstructure evolution is of great importance in determining the structural stability and applications of the single crystal superalloys. Phase-field method, which is an excellent tool to analyze the microstructure evolution at mesoscale, has been gradually used to investigate the rafting behavior. In this work, we review the crystal plasticity theory and phase-field method and discuss the application of the crystal plasticity theory and phase-field method in the analysis of the creep deformation and microstructure evolution of the single crystal superalloys

    Simultaneous Identification of Multiple Causal Mutations in Rice

    Get PDF
    Next-generation sequencing technologies (NGST) are being used to discover causal mutations in ethyl methanesulfonate (EMS)-mutagenized plant populations. However, the published protocols often deliver too many candidate sites and sometimes fail to find the mutant gene of interest. Accurate identification of the causal mutation from massive background polymorphisms and sequencing deficiencies remains challenging. Here we describe a NGST-based method, named SIMM, that can simultaneously identify the causal mutations in multiple independent mutants. Multiple rice mutants derived from the same parental line were back-crossed, and for each mutant, the derived F2 individuals of the recessive mutant phenotype were pooled and sequenced. The resulting sequences were aligned to the Nipponbare reference genome, and single nucleotide polymorphisms (SNPs) were subsequently compared among the mutants. Allele index (AI) and Euclidean distance (ED) were incorporated into the analysis to reduce noises caused by background polymorphisms and re-sequencing errors. Corrections of sequence bias against GC- and AT-rich sequences in the candidate region were conducted when necessary. Using this method, we successfully identified seven new mutant alleles from Huanghuazhan (HHZ), an elite indica rice cultivar in China. All mutant alleles were validated by phenotype association assay.Guangdong Innovative Research Team Program [201001S0104725509]; Ministry of Agriculture Transgenic Project [2012ZX08001001]; National Program on Key Basic Research Project of China [973 Program] [2011CB100101, 2013CBA01402]; National High Technology Research and Development Program of China [863 Program] [2014AA10A602]; Natural Science Foundation of China [31110103917]; Shenzhen Commission on Innovation and Technology [KQF201109160004A, CXZZ20140411140647863]SCI(E)ARTICLE
    • …
    corecore