3 research outputs found

    Effect of Garlic Juice on Quality Changes of Oyster (Crassostrea Belcheri) Meat During Chilled Storage

    Full text link
    Surat-thani oyster, a big and thin-shell bivalve mollusks, has been registered as Geographical Indicators, GI, as its good taste and delicacy as well as nutritious. Eaten style is raw then there is high risk to face with some disease as oyster is filter feeder. Physical, chemical, microbiological and sensory qualities after the oyster meat treated with the garlic juice at 0, 2 and 3 ml, respectively were monitored. Though initial pH of the control, untreated with garlic juice, was higher compared with the sample treated with 3 ml garlic juice, pH of it (control) was significantly lower (p5) at the end of the storag

    Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds

    No full text
    <div><p>A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, <i>Balanus amphitrite</i>. Side chain modification of butenolide resulted in butenolides <b>3c-3d</b>, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity.</p> </div

    Cochliomycin A inhibits the larval settlement of <i>Amphibalanus amphitrite</i> by activating the NO/cGMP pathway

    No full text
    <p>Cochliomycin A is a compound with anti-barnacle settlement activity and low toxicity, but the molecular mechanism of the compound is unknown. Here, isobaric tags for the relative or absolute quantitation (iTRAQ) labeling proteomic method were applied to analyze changes in the proteome of <i>Amphibalanus</i>(=<i>Balanus</i>) <i>amphitrite</i> cyprids in response to cochliomycin A treatment. Cochliomycin A affected the cytochrome P450, glutathione S-transferase (GST) and NO/cGMP pathways, among which the NO/cGMP pathway was considered to play a key role in barnacle larval settlement, while the cytochrome P450 and the GST pathways are mainly for detoxification. The results of real-time PCR further suggested the NO/cGMP pathway was activated in response to cochliomycin A. Larval settlement assays revealed that <i>S</i>-methylisothiourea sulfate (SMIS) and 1<i>H</i>-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) rescued cyprids from cochliomycin A-induced inhibition of larval settlement. The findings supported the hypothesis that cochliomycin A inhibited barnacle larval settlement by stimulating the NO/cGMP pathway.</p
    corecore