4 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Association of leisure time physical activity and NMR-detected circulating amino acids in peripubertal girls:a 7.5-year longitudinal study

    No full text
    Abstract This study investigated the longitudinal associations of physical activity and circulating amino acids concentration in peripubertal girls. Three hundred ninety-six Finnish girls participated in the longitudinal study from childhood (mean age 11.2 years) to early adulthood (mean age 18.2 years). Circulating amino acids were assessed by nuclear magnetic resonance spectroscopy. LTPA was assessed by self-administered questionnaire. We found that isoleucine, leucine and tyrosine levels were significantly higher in individuals with lower LTPA than their peers at age 11 (p < 0.05 for all), independent of BMI. In addition, isoleucine and leucine levels increased significantly (~15%) from childhood to early adulthood among the individuals with consistently low LTPA (p < 0.05 for both), while among the individuals with consistently high LTPA the level of these amino acids remained virtually unchanged. In conclusion, high level of physical activity is associated lower serum isoleucine and leucine in peripubertal girls, independent of BMI, which may serve as a mechanistic link between high level of physical activity in childhood and its health benefits later in life. Further studies in peripubertal boys are needed to assess whether associations between physical activity and circulating amino acids in children adolescents are sex-specific
    corecore