66 research outputs found

    The Entomopathogenic Fungal Endophytes Purpureocillium lilacinum (Formerly Paecilomyces lilacinus) and Beauveria bassiana Negatively Affect Cotton Aphid Reproduction under Both Greenhouse and Field Conditions

    Get PDF
    The effects of two entomopathogenic fungal endophytes, Beauveria bassiana and Purpureocillium lilacinum (formerly Paecilomyces lilacinus), were assessed on the reproduction of cotton aphid, Aphis gossypii Glover (Homoptera:Aphididae), through in planta feeding trials. In replicate greenhouse and field trials, cotton plants (Gossypium hirsutum) were inoculated as seed treatments with two concentrations of B. bassiana or P. lilacinum conidia. Positive colonization of cotton by the endophytes was confirmed through potato dextrose agar (PDA) media plating and PCR analysis. Inoculation and colonization of cotton by either B. bassiana or P. lilacinum negatively affected aphid reproduction over periods of seven and 14 days in a series of greenhouse trials. Field trials were conducted in the summers of 2012 and 2013 in which cotton plants inoculated as seed treatments with B. bassiana and P. lilacinum were exposed to cotton aphids for 14 days. There was a significant overall effect of endophyte treatment on the number of cotton aphids per plant. Plants inoculated with B. bassiana had significantly lower numbers of aphids across both years. The number of aphids on plants inoculated with P. lilacinum exhibited a similar, but non-significant, reduction in numbers relative to control plants. We also tested the pathogenicity of both P. lilacinum and B. bassiana strains used in the experiments against cotton aphids in a survival experiment where 60% and 57% of treated aphids, respectively, died from infection over seven days versus 10% mortality among control insects. Our results demonstrate (i) the successful establishment of P. lilacinum and B. bassiana as endophytes in cotton via seed inoculation, (ii) subsequent negative effects of the presence of both target endophytes on cotton aphid reproduction using whole plant assays, and (iii) that the P. lilacinum strain used is both endophytic and pathogenic to cotton aphids. Our results illustrate the potential of using these endophytes for the biological control of aphids and other herbivores under greenhouse and field conditions

    Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants

    Get PDF
    Common mycorrhizal networks (CMNs) link multiple plants together. We hypothesized that CMNs can serve as an underground conduit for transferring herbivore-induced defence signals. We established CMN between two tomato plants in pots with mycorrhizal fungus Funneliformis mosseae, challenged a ‘donor' plant with caterpillar Spodoptera litura, and investigated defence responses and insect resistance in neighbouring CMN-connected ‘receiver' plants. After CMN establishment caterpillar infestation on ‘donor' plant led to increased insect resistance and activities of putative defensive enzymes, induction of defence-related genes and activation of jasmonate (JA) pathway in the ‘receiver' plant. However, use of a JA biosynthesis defective mutant spr2 as ‘donor' plants resulted in no induction of defence responses and no change in insect resistance in ‘receiver' plants, suggesting that JA signalling is required for CMN-mediated interplant communication. These results indicate that plants are able to hijack CMNs for herbivore-induced defence signal transfer and interplant defence communication

    Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon

    Get PDF
    Although the function of silicon (Si) in plant physiology has long been debated, its beneficial effects on plant resistance against abiotic and biotic stresses, including insect herbivory, have been well documented. In addition, the jasmonate (JA) signaling pathway plays a crucial role in mediating antiherbivore defense responses in plants. However, potential interactions between JA and Si in response to insect attack have not been examined directly. To explore the role JA may play in Si-enhanced resistance, we silenced the expression of allene oxide synthase (OsAOS; active in JA biosynthesis) and CORONATINE INSENSITIVE1 (OsCOI1; active in JA perception) genes in transgenic rice plants via RNAi and examined resulting changes in Si accumulation and defense responses against caterpillar Cnaphalocrocis medinalis (rice leaffolder, LF) infestation. Si pretreatment increased rice resistance against LF larvae in wild-type plants but not in OsAOS and OsCOI1 RNAi lines. Upon LF attack, wild-type plants subjected to Si pretreatment exhibited enhanced defense responses relative to untreated controls, including higher levels of JA accumulation; increased levels of transcripts encoding defense marker genes; and elevated activities of peroxidase, polyphenol oxidase, and trypsin protease inhibitor. Additionally, reduced Si deposition and Si cell expansion were observed in leaves of OsAOS and OsCOI1 RNAi plants in comparison with wild-type plants, and reduced steady-state transcript levels of the Si transporters OsLsi1, OsLsi2, and OsLsi6 were observed in Si-pretreated plants after LF attack. These results suggest a strong interaction between Si and JA in defense against insect herbivores involving priming of JA-mediated defense responses by Si and the promotion of Si accumulation by JA

    Antagonistic Regulation, Yet Synergistic Defense: Effect of Bergapten and Protease Inhibitor on Development of Cowpea Bruchid Callosobruchus maculatus

    Get PDF
    The furanocoumarin compound bergapten is a plant secondary metabolite that has anti-insect function. When incorporated into artificial diet, it retarded cowpea bruchid development, decreased fecundity, and caused mortality at a sufficient dose. cDNA microarray analysis indicated that cowpea bruchid altered expression of 543 midgut genes in response to dietary bergapten. Among these bergapten-regulated genes, 225 have known functions; for instance, those encoding proteins related to nutrient transport and metabolism, development, detoxification, defense and various cellular functions. Such differential gene regulation presumably facilitates the bruchids' countering the negative effect of dietary bergapten. Many genes did not have homology (E-value cutoff 10(−6)) with known genes in a BlastX search (206), or had homology only with genes of unknown function (112). Interestingly, when compared with the transcriptomic profile of cowpea bruchids treated with dietary soybean cysteine protease inhibitor N (scN), 195 out of 200 coregulated midgut genes are oppositely regulated by the two compounds. Simultaneous administration of bergapten and scN attenuated magnitude of change in selected oppositely-regulated genes, as well as led to synergistic delay in insect development. Therefore, targeting insect vulnerable sites that may compromise each other's counter-defensive response has the potential to increase the efficacy of the anti-insect molecules

    Silencing COI1 in Rice Increases Susceptibility to Chewing Insects and Impairs Inducible Defense

    Get PDF
    The jasmonic acid (JA) pathway plays a key role in plant defense responses against herbivorous insects. CORONATINE INSENSITIVE1 (COI1) is an F-box protein essential for all jasmonate responses. However, the precise defense function of COI1 in monocotyledonous plants, especially in rice (Oryza sativa L.) is largely unknown. We silenced OsCOI1 in rice plants via RNA interference (RNAi) to determine the role of OsCOI1 in rice defense against rice leaf folder (LF) Cnaphalocrocis medinalis, a chewing insect, and brown planthopper (BPH) Nilaparvata lugens, a phloem-feeding insect. In wild-type rice plants (WT), the transcripts of OsCOI1 were strongly and continuously up-regulated by LF infestation and methyl jasmonate (MeJA) treatment, but not by BPH infestation. The abundance of trypsin protease inhibitor (TrypPI), and the enzymatic activities of polyphenol oxidase (PPO) and peroxidase (POD) were enhanced in response to both LF and BPH infestation, but the activity of lipoxygenase (LOX) was only induced by LF. The RNAi lines with repressed expression of OsCOI1 showed reduced resistance against LF, but no change against BPH. Silencing OsCOI1 did not alter LF-induced LOX activity and JA content, but it led to a reduction in the TrypPI content, POD and PPO activity by 62.3%, 48.5% and 27.2%, respectively. In addition, MeJA-induced TrypPI and POD activity were reduced by 57.2% and 48.2% in OsCOI1 RNAi plants. These results suggest that OsCOI1 is an indispensable signaling component, controlling JA-regulated defense against chewing insect (LF) in rice plants, and COI1 is also required for induction of TrypPI, POD and PPO in rice defense response to LF infestation

    Draft genome sequence of the mulberry tree Morus notabilis

    Get PDF
    Human utilization of the mulberry–silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating the species’ spread worldwide. The mulberry tree is among a few eudicots but several Rosales that have not preserved genome duplications in more than 100 million years; however, a neopolyploid series found in the mulberry tree and several others suggest that new duplications may confer benefits. Five predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm, suggesting interactions at molecular levels in the plant–herbivore relationship. The identification and analyses of mulberry genes involved in diversifying selection, resistance and protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry plants

    Transcriptional Regulation of Sorghum Defense Determinants against a Phloem-Feeding Aphid

    No full text
    When attacked by a phloem-feeding greenbug aphid (Schizaphis graminum), sorghum (Sorghum bicolor) activates jasmonic acid (JA)- and salicylic acid (SA)-regulated genes, as well as genes outside known wounding and SA signaling pathways. A collection of 672 cDNAs was obtained by differential subtraction with cDNAs prepared from sorghum seedlings infested by greenbug aphids and those from uninfested seedlings. Subsequent expression profiling using DNA microarray and northern-blot analyses identified 82 transcript types from this collection responsive to greenbug feeding, methyl jasmonate (MeJA), or SA application. DNA sequencing analyses indicated that these encoded proteins functioning in direct defense, defense signaling, oxidative burst, secondary metabolism, abiotic stress, cell maintenance, and photosynthesis, as well as proteins of unknown function. In response to insect feeding, sorghum increased transcript abundance of numerous defense genes, with some SA-dependent pathogenesis-related genes responding to greenbug more strongly than to SA. In contrast, only weak induction of MeJA-regulated defense genes was observed after greenbug treatment. However, infestation tests confirmed that JA-regulated pathways were effective in plant defense against greenbugs. Activation of certain transcripts exclusively by greenbug infestation was observed, and may represent unique signal transduction events independent of JA- and SA-regulated pathways. Results indicate that plants coordinately regulate defense gene expression when attacked by phloem-feeding aphids, but also suggest that aphids are able to avoid triggering activation of some otherwise potentially effective plant defensive machinery, possibly through their particular mode of feeding

    Clear advantages for fall armyworm larvae from feeding on maize relative to its ancestor Balsas teosinte may not be reflected in their mother\u27s host choice

    No full text
    © 2015 The Netherlands Entomological Society. Consistent with an increasing number of comparisons between crop plants and their wild ancestors, a previous study showed that in the field, maize [Zea mays ssp. mays L. (Poaceae)] suffers more herbi-vory by larvae of Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae) than its ancestor Balsas teosinte (Zea mays ssp. parviglumis Iltis & Doebley). This study addressed plausible causes of the differing herbivory levels between maize and Balsas teosinte, specifically whether host plant selection by adult females is biased for either host plant depending on larval performance-i.e., the preference-performance hypothesis-or risk of mortality by parasitoids and predators-i.e., the natural enemy-free space hypothesis. Field observations showed that performance of S. frugiperda larvae was superior on maize compared with Balsas teosinte, a result partially explainable by the greater toughness of teosinte compared with maize tissue, but not by a difference in inhibition of protein digestion by larvae. Additional field observations showed that the mortality risk of S. frugiperda larvae is higher on Balsas teosinte, as indicated by higher parasitism (ca. four-fold) and predation (ca. three-fold) rates on the teosinte compared with maize. However, laboratory observations showed that S. frugiperda females did not discriminate between maize and Balsas teosinte for oviposition. Overall, the study\u27s results were consistent with prior observations that direct and indirect defenses of maize against S. frugiperda larvae were weakened with domestication. In contrast, the results were inconsistent with predictions of the preference-performance and natural enemy-free space hypotheses, because selection of maize or Balsas teosinte plants by S. frugiperda females was independent of their offspring\u27s performance and risk of mortality by natural enemies. On the one hand, this study\u27s results partially explained differing herbivory levels between a crop and its wild ancestor, and on the other hand they suggested that host selection by S. frugiperda may be mediated by larval dispersal behavior and host choices

    Metabolomics Reveals Changes in Metabolite Profiles among Pre-Diapause, Diapause and Post-Diapause Larvae of Sitodiplosis mosellana (Diptera: Cecidomyiidae)

    No full text
    Sitodiplosis mosellana, a notorious pest of wheat worldwide, copes with temperature extremes during harsh summers and winters by entering obligatory diapause as larvae. However, the metabolic adaptive mechanism underlying this process is largely unknown. In this study, we performed a comparative metabolomics analysis on S. mosellana larvae at four programmed developmental stages, i.e., pre-diapause, diapause, low temperature quiescence and post-diapause development. In total, we identified 54 differential metabolites based on pairwise comparisons of the four groups. Of these metabolites, 37 decreased in response to diapause, including 4 TCA cycle intermediates (malic acid, citric acid, fumaric acid, α-ketoglutaric acid), 2 saturated fatty acids (palmitic acid, stearic acid) and most amino acids. In contrast, nine metabolites, including trehalose, glycerol, mannitol, proline, alanine, oleic acid and linoleic acid were significantly higher in both the diapause and quiescent stages than the other two stages. In addition to two of them (trehalose, proline), glutamine was also significantly highest in the cold quiescence stage. These elevated metabolites could function as cryoprotectants and/or energy reserves. These findings suggest that the reduced TCA cycle activity and elevated biosynthesis of functional metabolites are most likely responsible for maintaining low metabolic activity and cold tolerance during diapause, which is crucial for the survival and post-diapause development of this pest
    • …
    corecore