111 research outputs found

    A novel dual-stator hybrid excited synchronous wind generator

    Get PDF
    This paper presents a novel dual-stator hybrid excited synchronous wind generator and describes its structural features and operation principle. The no-load magnetic fields with different field currents are computed by 3-D finite-element method. Static characteristics, including the flux-linkage and EMF waveforms of stator windings, and inductance waveforms of armature windings and field winding, are analyzed. The simulation results show that due to the dual-stator structure, the air-gap magnetic flux can be easily controlled, while the output voltage can be increased effectively. Tests are performed on the prototype machine to validate the predicted results, and an excellent agreement is obtained

    Lipin1 Regulates Skeletal Muscle Differentiation through Extracellular Signal-regulated Kinase (ERK) Activation and Cyclin D Complex-Regulated Cell Cycle Withdrawal

    Get PDF
    Lipin1, an intracellular protein, plays critical roles in controlling lipid synthesis and energy metabolism through its enzymatic activity and nuclear transcriptional functions. Several mouse models of skeletal muscle wasting are associated with lipin1 mutation or altered expression. Recent human studies have suggested that children with homozygous null mutations in the LPIN1 gene suffer from rhabdomyolysis. However, the underlying pathophysiologic mechanism is still poorly understood. In the present study we examined whether lipin1 contributes to regulating muscle regeneration. We characterized the time course of skeletal muscle regeneration in lipin1-deficient fld mice after injury. We found that fld mice exhibited smaller regenerated muscle fiber cross-sectional areas compared with wild-type mice in response to injury. Our results from a series of in vitro experiments suggest that lipin1 is up-regulated and translocated to the nucleus during myoblast differentiation and plays a key role in myogenesis by regulating the cytosolic activation of ERK1/2 to form a complex and a downstream effector cyclin D3-mediated cell cycle withdrawal. Overall, our study reveals a previously unknown role of lipin1 in skeletal muscle regeneration and expands our understanding of the cellular and molecular mechanisms underlying skeletal muscle regeneration

    Preparation of β-lactoglobulin-derived tryptophan peptide and its effect on anxiety-like behaviors in Zebrafish

    Get PDF
    This study aimed to obtain three Trp-containing peptides from β-lactoglobulin and study their effects on anxiety-like behaviors in zebrafish. Three Trp-containing peptides were prepared from β-lactoglobulin by selective enzymatic hydrolysis and identified by UPLC-Q-TOF MS/MS. The anxiety-like behaviors of zebrafish were reduced after two weeks of administrated of β-lactoglobulin Trp peptides (LAWP), VAGTWY, VAGTW and G TW(concentration of 56 μg/mL or 500 μg/mL). As an index of serotonergic activity, we assessed the enhancing abilities of 5-HT synthesis. The treatment remarkably enhanced the 5-HT synthesis by upregulation of Trp concentration and Trp hydroxylase activation. In addition, this study further validated the anti-anxiety effects of whey protein hydrolysate with a high Trp index in animal and the experimental results were consistent with those reported in previous studies. Our results showed that β-lactoglobulin Trp peptides ingestion has a significant anti-anxiety effect as evidenced by the increasing Trp concentration, TPH activation and 5-HT level compared to the control group, with the VAGTW being the more effective

    MODMA dataset: a Multi-modal Open Dataset for Mental-disorder Analysis

    Full text link
    According to the World Health Organization, the number of mental disorder patients, especially depression patients, has grown rapidly and become a leading contributor to the global burden of disease. However, the present common practice of depression diagnosis is based on interviews and clinical scales carried out by doctors, which is not only labor-consuming but also time-consuming. One important reason is due to the lack of physiological indicators for mental disorders. With the rising of tools such as data mining and artificial intelligence, using physiological data to explore new possible physiological indicators of mental disorder and creating new applications for mental disorder diagnosis has become a new research hot topic. However, good quality physiological data for mental disorder patients are hard to acquire. We present a multi-modal open dataset for mental-disorder analysis. The dataset includes EEG and audio data from clinically depressed patients and matching normal controls. All our patients were carefully diagnosed and selected by professional psychiatrists in hospitals. The EEG dataset includes not only data collected using traditional 128-electrodes mounted elastic cap, but also a novel wearable 3-electrode EEG collector for pervasive applications. The 128-electrodes EEG signals of 53 subjects were recorded as both in resting state and under stimulation; the 3-electrode EEG signals of 55 subjects were recorded in resting state; the audio data of 52 subjects were recorded during interviewing, reading, and picture description. We encourage other researchers in the field to use it for testing their methods of mental-disorder analysis

    Genome-Wide Identification and Analysis of Grape Aldehyde Dehydrogenase (ALDH) Gene Superfamily

    Get PDF
    The completion of the grape genome sequencing project has paved the way for novel gene discovery and functional analysis. Aldehyde dehydrogenases (ALDHs) comprise a gene superfamily encoding NAD(P)(+)-dependent enzymes that catalyze the irreversible oxidation of a wide range of endogenous and exogenous aromatic and aliphatic aldehydes. Although ALDHs have been systematically investigated in several plant species including Arabidopsis and rice, our knowledge concerning the ALDH genes, their evolutionary relationship and expression patterns in grape has been limited.A total of 23 ALDH genes were identified in the grape genome and grouped into ten families according to the unified nomenclature system developed by the ALDH Gene Nomenclature Committee (AGNC). Members within the same grape ALDH families possess nearly identical exon-intron structures. Evolutionary analysis indicates that both segmental and tandem duplication events have contributed significantly to the expansion of grape ALDH genes. Phylogenetic analysis of ALDH protein sequences from seven plant species indicates that grape ALDHs are more closely related to those of Arabidopsis. In addition, synteny analysis between grape and Arabidopsis shows that homologs of a number of grape ALDHs are found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the speciation of the grape and Arabidopsis. Microarray gene expression analysis revealed large number of grape ALDH genes responsive to drought or salt stress. Furthermore, we found a number of ALDH genes showed significantly changed expressions in responses to infection with different pathogens and during grape berry development, suggesting novel roles of ALDH genes in plant-pathogen interactions and berry development.The genome-wide identification, evolutionary and expression analysis of grape ALDH genes should facilitate research in this gene family and provide new insights regarding their evolution history and functional roles in plant stress tolerance

    The four-dimensional smooth Poincaré conjecture

    No full text

    Investigation of an Intensifying-flux Variable Flux-leakage Interior Permanent Magnet Machine for Wide Speed Range

    No full text
    In this paper, a novel intensifying-flux variable flux-leakage interior permanent magnet (IFVF-IPM) machine is proposed, in which flux barriers were designed deliberately between the adjacent poles to obtain intensifying-flux effect and variable flux-leakage property. The rotor topology and design principles of the proposed machine are also introduced. Then, a multi-objective optimization method is adopted based on the sensitivity analysis, and some design variables of IFVF-IPM machine with strong sensitivity are selected to optimization progress by using the non-dominated sorting genetic algorithm-II (NSGA-II). Moreover, the electromagnetic characteristics of conventional IPM machine, conventional IFVF-IPM machine (CIFVF-IPM) and the novel IFVF-IPM machine are compared based on the finite element analysis (FEA) method which includes flux linkage, inductances characteristic, torque-speed envelops and power characteristic, as well as evaluation of the risk of irreversible demagnetization. Finally, the experiment results show that the IFVF- IPM machine has a better performance in flux weakening capability for wide speed range and a lower risk of irreversible demagnetization, which indicates the validity and feasibility of the proposed machine
    • …
    corecore