1,578 research outputs found

    Recursion relations, Helicity Amplitudes and Dimensional Regularization

    Full text link
    Using the method of on-shell recursion relations we compute tree level amplitudes including D-dimensional scalars and fermions. These tree level amplitudes are needed for calculations of one-loop amplitudes in QCD involving external quarks and gluons.Comment: 28 pages, 6 figures, clarifications adde

    Recursive Calculation of One-Loop QCD Integral Coefficients

    Full text link
    We present a new procedure using on-shell recursion to determine coefficients of integral functions appearing in one-loop scattering amplitudes of gauge theories, including QCD. With this procedure, coefficients of integrals, including bubbles and triangles, can be determined without resorting to integration. We give criteria for avoiding spurious singularities and boundary terms that would invalidate the recursion. As an example where the criteria are satisfied, we obtain all cut-constructible contributions to the one-loop n-gluon scattering amplitude, A_n^{oneloop}(...--+++...), with split-helicity from an N=1 chiral multiplet and from a complex scalar. Using the supersymmetric decomposition, these are ingredients in the construction of QCD amplitudes with the same helicities. This method requires prior knowledge of amplitudes with sufficiently large numbers of legs as input. In many cases, these are already known in compact forms from the unitarity method.Comment: 36 pages; v2 clarification added and typos fixed, v3 typos fixe

    MHV-Vertices for Gravity Amplitudes

    Full text link
    We obtain a CSW-style formalism for calculating graviton scattering amplitudes and prove its validity through the use of a special type of BCFW-like parameter shift. The procedure is illustrated with explicit examples.Comment: 21 pages, minor typos corrected, proof added in section

    Tracing tumorigenesis in a solid tumor model at single-cell resolution

    Get PDF
    Characterizing the complex composition of solid tumors is fundamental for understanding tumor initiation, progression and metastasis. While patient-derived samples provide valuable insight, they are heterogeneous on multiple molecular levels, and often originate from advanced tumor stages. Here, we use single-cell transcriptome and epitope profiling together with pathway and lineage analyses to study tumorigenesis from a developmental perspective in a mouse model of salivary gland squamous cell carcinoma. We provide a comprehensive cell atlas and characterize tumor-specific cells. We find that these cells are connected along a reproducible developmental trajectory: initiated in basal cells exhibiting an epithelial-to-mesenchymal transition signature, tumorigenesis proceeds through Wnt-differential cancer stem cell-like subpopulations before differentiating into luminal-like cells. Our work provides unbiased insights into tumor-specific cellular identities in a whole tissue environment, and emphasizes the power of using defined genetic model systems

    From Trees to Loops and Back

    Full text link
    We argue that generic one-loop scattering amplitudes in supersymmetric Yang-Mills theories can be computed equivalently with MHV diagrams or with Feynman diagrams. We first present a general proof of the covariance of one-loop non-MHV amplitudes obtained from MHV diagrams. This proof relies only on the local character in Minkowski space of MHV vertices and on an application of the Feynman Tree Theorem. We then show that the discontinuities of one-loop scattering amplitudes computed with MHV diagrams are precisely the same as those computed with standard methods. Furthermore, we analyse collinear limits and soft limits of generic non-MHV amplitudes in supersymmetric Yang-Mills theories with one-loop MHV diagrams. In particular, we find a simple explicit derivation of the universal one-loop splitting functions in supersymmetric Yang-Mills theories to all orders in the dimensional regularisation parameter, which is in complete agreement with known results. Finally, we present concrete and illustrative applications of Feynman's Tree Theorem to one-loop MHV diagrams as well as to one-loop Feynman diagrams.Comment: 52 pages, 17 figures. Some typos in Appendix A correcte

    Finite Element Convergence for the Joule Heating Problem with Mixed Boundary Conditions

    Get PDF
    We prove strong convergence of conforming finite element approximations to the stationary Joule heating problem with mixed boundary conditions on Lipschitz domains in three spatial dimensions. We show optimal global regularity estimates on creased domains and prove a priori and a posteriori bounds for shape regular meshes.Comment: Keywords: Joule heating problem, thermistors, a posteriori error analysis, a priori error analysis, finite element metho

    Effects of azimuth-symmetric acceptance cutoffs on the measured asymmetry in unpolarized Drell-Yan fixed target experiments

    Get PDF
    Fixed-target unpolarized Drell-Yan experiments often feature an acceptance depending on the polar angle of the lepton tracks in the laboratory frame. Typically leptons are detected in a defined angular range, with a dead zone in the forward region. If the cutoffs imposed by the angular acceptance are independent of the azimuth, at first sight they do not appear dangerous for a measurement of the cos(2\phi)-asymmetry, relevant because of its association with the violation of the Lam-Tung rule and with the Boer-Mulders function. On the contrary, direct simulations show that up to 10 percent asymmetries are produced by these cutoffs. These artificial asymmetries present qualitative features that allow them to mimic the physical ones. They introduce some model-dependence in the measurements of the cos(2\phi)-asymmetry, since a precise reconstruction of the acceptance in the Collins-Soper frame requires a Monte Carlo simulation, that in turn requires some detailed physical input to generate event distributions. Although experiments in the eighties seem to have been aware of this problem, the possibility of using the Boer-Mulders function as an input parameter in the extraction of Transversity has much increased the requirements of precision on this measurement. Our simulations show that the safest approach to these measurements is a strong cutoff on the Collins-Soper polar angle. This reduces statistics, but does not necessarily decrease the precision in a measurement of the Boer-Mulders function.Comment: 13 pages, 14 figure

    On Exceptional Vertex Operator (Super) Algebras

    Get PDF
    We consider exceptional vertex operator algebras and vertex operator superalgebras with the property that particular Casimir vectors constructed from the primary vectors of lowest conformal weight are Virasoro descendents of the vacuum. We show that the genus one partition function and characters for simple ordinary modules must satisfy modular linear differential equations. We show the rationality of the central charge and module lowest weights, modularity of solutions, the dimension of each graded space is a rational function of the central charge and that the lowest weight primaries generate the algebra. We also discuss conditions on the reducibility of the lowest weight primary vectors as a module for the automorphism group. Finally we analyse solutions for exceptional vertex operator algebras with primary vectors of lowest weight up to 9 and for vertex operator superalgebras with primary vectors of lowest weight up to 17/2. Most solutions can be identified with simple ordinary modules for known algebras but there are also four conjectured algebras generated by weight two primaries and three conjectured extremal vertex operator algebras generated by primaries of weight 3, 4 and 6 respectively.Comment: 37 page

    Scalar diagrammatic rules for Born amplitudes in QCD

    Full text link
    We show that all Born amplitudes in QCD can be calculated from scalar propagators and a set of three- and four-valent vertices. In particular, our approach includes amplitudes with any number of quark pairs. The quarks may be massless or massive. The proof of the formalism is given entirely within quantum field theory.Comment: 20 pages, references adde

    Filtering spin with tunnel-coupled electron wave guides

    Full text link
    We show how momentum-resolved tunneling between parallel electron wave guides can be used to observe and exploit lifting of spin degeneracy due to Rashba spin-orbit coupling. A device is proposed that achieves spin filtering without using ferromagnets or the Zeeman effect.Comment: 4 pages, 4 figures, RevTex
    • …
    corecore