14,676 research outputs found
Real-Time Predictive Modeling and Robust Avoidance of Pedestrians with Uncertain, Changing Intentions
To plan safe trajectories in urban environments, autonomous vehicles must be
able to quickly assess the future intentions of dynamic agents. Pedestrians are
particularly challenging to model, as their motion patterns are often uncertain
and/or unknown a priori. This paper presents a novel changepoint detection and
clustering algorithm that, when coupled with offline unsupervised learning of a
Gaussian process mixture model (DPGP), enables quick detection of changes in
intent and online learning of motion patterns not seen in prior training data.
The resulting long-term movement predictions demonstrate improved accuracy
relative to offline learning alone, in terms of both intent and trajectory
prediction. By embedding these predictions within a chance-constrained motion
planner, trajectories which are probabilistically safe to pedestrian motions
can be identified in real-time. Hardware experiments demonstrate that this
approach can accurately predict pedestrian motion patterns from onboard
sensor/perception data and facilitate robust navigation within a dynamic
environment.Comment: Submitted to 2014 International Workshop on the Algorithmic
Foundations of Robotic
Association between habenula dysfunction and motivational symptoms in unmedicated major depressive disorder
The lateral habenula plays a central role in reward and punishment processing and has been suggested to drive the cardinal symptom of anhedonia in depression. This hypothesis is largely based on observations of habenula hypermetabolism in animal models of depression, but the activity of habenula and its relationship with clinical symptoms in patients with depression remains unclear. High-resolution functional magnetic resonance imaging (fMRI) and computational modelling were used to investigate the activity of the habenula during a probabilistic reinforcement learning task with rewarding and punishing outcomes in 21 unmedicated patients with major depression and 17 healthy participants. High-resolution anatomical scans were also acquired to assess group differences in habenula volume. Healthy individuals displayed the expected activation in the left habenula during receipt of punishment and this pattern was confirmed in the computational analysis of prediction error processing. In depressed patients, there was a trend towards attenuated left habenula activation to punishment, while greater left habenula activation was associated with more severe depressive symptoms and anhedonia. We also identified greater habenula volume in patients with depression, which was associated with anhedonic symptoms. Habenula dysfunction may contribute to abnormal response to punishment in patients with depression, and symptoms such as anhedonia
Interplay between elastic fields due to gravity and a partial dislocation for a hard-sphere crystal coherently grown under gravity: driving force for defect disappearance
We previously observed that an intrinsic staking fault shrunk through a glide
of a Shockley partial dislocation terminating its lower end in a hard-sphere
crystal under gravity coherently grown in by Monte Carlo simulations
[Mori et al., Molec. Phys. 105, 1377 (2007)]; it was an answer to a one-decade
long standing question why the stacking disorder in colloidal crystals reduced
under gravity [Zhu et al., Nature 387, 883 (1997)]. Here, we present an elastic
energy calculation; in addition to the self-energy of the partial dislocation
[Mori et al., Prog. Theor. Phys. Suppl. 178, 33 (2009)] we calculate the
cross-coupling term between elastic field due to gravity and that due to a
Shockley partial dislocation. The cross term is a increasing function of the
linear dimension R over which the elastic field expands, showing that a driving
force arises for the partial dislocation moving toward the upper boundary of a
grain.Comment: 8pages, 4figures, to be published in Molecular Physic
Recommended from our members
First-principles calculations and experimental studies of: XYZ 2 thermoelectric compounds: Detailed analysis of van der Waals interactions
First-principles calculations can accelerate the search for novel high-performance thermoelectric materials. However, the prediction of the thermoelectric properties is strongly dependent on the approximations used for the calculations. Here, thermoelectric properties were calculated with different computational approximations (i.e., PBE-GGA, HSE06, spin-orbit coupling and DFT-D3) for three layered XYZ2 compounds (TmAgTe2, YAgTe2, and YCuTe2). In addition to the computations, the structural, electrical and thermal properties of these compounds were measured experimentally and compared to the computations. An enhanced prediction of the crystal structure and heat capacity was achieved with the inclusion of van der Waals interactions due to more accurate modeling of the interatomic forces. In particular, a large shift of the acoustic phonons and low-frequency optical phonons to lower frequencies was observed from the dispersion-optimized structure. From the phonon dispersion curves of these compounds, the ultralow thermal conductivity in the investigated XYZ2 compounds could be described by a recent developed minimum thermal conductivity model. For the prediction of the electrical conductivity, a temperature-dependent relaxation time was used, and it was limited by acoustic phonons. While HSE06 has only a small influence on the electrical properties due to a computed band gap energy of >0.25 eV, the inclusion of both van der Waals interactions and spin-orbit coupling leads to a more accurate band structure, resulting in better prediction of electrical properties. Furthermore, the experimental thermoelectric properties of YAgTe2, TmAg0.95Zn0.05Te2 and TmAg0.95Mg0.05Te2 were measured, showing an increase in zT of TmAg0.95Zn0.05Te2 by more than 35% (zT = 0.47 Ā± 0.12) compared to TmAgTe2
Conscious monitoring and control (reinvestment) in surgical performance under pressure.
Research on intraoperative stressors has focused on external factors without considering individual differences in the ability to cope with stress. One individual difference that is implicated in adverse effects of stress on performance is "reinvestment," the propensity for conscious monitoring and control of movements. The aim of this study was to examine the impact of reinvestment on laparoscopic performance under time pressure
First macrobiota biomineralisation was environmentally triggered
Why large and diverse skeletons first appeared ca 550 Ma is not well understood. Many Ediacaran skeletal biota show evidence of flexibility, and bear notably thin skeletal walls with simple, non-hierarchical microstructures of either aragonite or high-Mg calcite. We present evidence that the earliest skeletal macrobiota, found only in carbonate rocks, had close soft-bodied counterparts hosted in contemporary clastic rocks. This includes the calcareous discoidal fossil Suvorovella, similar to holdfasts of Ediacaran biota taxa previously known only as casts and moulds, as well as tubular and vase-shaped fossils. In sum, these probably represent taxa of diverse affinity including unicellular eukaryotes, total group cnidarians and problematica. Our findings support the assertion that the calcification was an independent and derived feature that appeared in diverse groups where an organic scaffold was the primitive character, which provided the framework for interactions between the extracellular matrix and mineral ions. We conclude that such skeletons may have been acquired with relative ease in the highly saturated, high alkalinity carbonate settings of the Ediacaran, where carbonate polymorph was further controlled by seawater chemistry. The trigger for Ediacaran biomineralization may have been either changing seawater Mg/Ca and/or increasing oxygen levels. By the Early Cambrian, however, biomineralization styles and the range of biominerals had significantly diversified, perhaps as an escalating defensive response to increasing predation pressure. Indeed skeletal hardparts had appeared in clastic settings by Cambrian Stage 1, suggesting independence from ambient seawater chemistry where genetic and molecular mechanisms controlled biomineralization and mineralogy had become evolutionarily constrained
Surface plasmon-enhanced electroluminescence in organic light-emitting diodes incorporating Au nanoparticles
Surface plasmon-enhanced electroluminescence (EL) in an organic light-emitting diode is demonstrated by incorporating the synthesized Au nanoparticles (NPs) in the hole injection layer of poly(3,4-ethylene dioxythiophene):polystyrene sulfonic acid. An increase of ā¼25% in the EL intensity and efficiency are achieved for devices with Au NPs, whereas the spectral and electrical properties remain almost identical to the control device. Time-resolved photoluminescence spectroscopy reveals that the EL enhancement is ascribed to the increase in spontaneous emission rate due to the plasmonic near-field effect induced by Au NPs. Ā© 2012 American Institute of Physics
Association between exposure to environmental tobacco smoke and biomarkers of oxidative stress among patients hospitalised with acute myocardial infarction
Objective
To determine whether exposure to environmental tobacco smoke was associated with oxidative stress among patients hospitalised for acute myocardial infarction.<p></p>
Design
An existing cohort study of 1,261 patients hospitalised for acute myocardial infarction.<p></p>
Setting
Nine acute hospitals in Scotland.<p></p>
Participants
Sixty never smokers who had been exposed to environmental tobacco smoke (admission serum cotinine ā„3.0 ng/mL) were compared with 60 never smokers who had not (admission serum cotinine ā¤0.1 ng/mL).<p></p>
Intervention
None.<p></p>
Main outcome measures
Three biomarkers of oxidative stress (protein carbonyl, malondialdehyde (MDA) and oxidised low-density lipoprotein (ox-LDL)) were measured on admission blood samples and adjusted for potential confounders.<p></p>
Results
After adjusting for baseline differences in age, sex and socioeconomic status, exposure to environmental tobacco smoke was associated with serum concentrations of both protein carbonyl (beta coefficient 7.96, 95% CI 0.76, 15.17, p = 0.031) and MDA (beta coefficient 10.57, 95% CI 4.32, 16.81, p = 0.001) but not ox-LDL (beta coefficient 2.14, 95% CI ā8.94, 13.21, p = 0.703).<p></p>
Conclusions
Exposure to environmental tobacco smoke was associated with increased oxidative stress. Further studies are requires to explore the role of oxidative stress in the association between environmental tobacco smoke and myocardial infarction.<p></p>
- ā¦