90,527 research outputs found

    On the convergence of autonomous agent communities

    Get PDF
    This is the post-print version of the final published paper that is available from the link below. Copyright @ 2010 IOS Press and the authors.Community is a common phenomenon in natural ecosystems, human societies as well as artificial multi-agent systems such as those in web and Internet based applications. In many self-organizing systems, communities are formed evolutionarily in a decentralized way through agents' autonomous behavior. This paper systematically investigates the properties of a variety of the self-organizing agent community systems by a formal qualitative approach and a quantitative experimental approach. The qualitative formal study by applying formal specification in SLABS and Scenario Calculus has proven that mature and optimal communities always form and become stable when agents behave based on the collective knowledge of the communities, whereas community formation does not always reach maturity and optimality if agents behave solely based on individual knowledge, and the communities are not always stable even if such a formation is achieved. The quantitative experimental study by simulation has shown that the convergence time of agent communities depends on several parameters of the system in certain complicated patterns, including the number of agents, the number of community organizers, the number of knowledge categories, and the size of the knowledge in each category

    Joint Dynamic Radio Resource Allocation and Mobility Load Balancing in 3GPP LTE Multi-Cell Network

    Get PDF
    Load imbalance, together with inefficient utilization of system resource, constitute major factors responsible for poor overall performance in Long Term Evolution (LTE) network. In this paper, a novel scheme of joint dynamic resource allocation and load balancing is proposed to achieve a balanced performance improvement in 3rd Generation Partnership Project (3GPP) LTE Self-Organizing Networks (SON). The new method which aims at maximizing network resource efficiency subject to inter-cell interference and intra-cell resource constraints is implemented in two steps. In the first step, an efficient resource allocation, including user scheduling and power assignment, is conducted in a distributed manner to serve as many users in the whole network as possible. In the second step, based on the resource allocation scheme, the optimization objective namely network resource efficiency can be calculated and load balancing is implemented by switching the user that can maximize the objective function. Lagrange Multipliers method and heuristic algorithm are used to resolve the formulated optimization problem. Simulation results show that our algorithm achieves better performance in terms of user throughput, fairness, load balancing index and unsatisfied user number compared with the traditional approach which takes resource allocation and load balancing into account, respectively

    Navigation in a small world with local information

    Full text link
    It is commonly known that there exist short paths between vertices in a network showing the small-world effect. Yet vertices, for example, the individuals living in society, usually are not able to find the shortest paths, due to the very serious limit of information. To theoretically study this issue, here the navigation process of launching messages toward designated targets is investigated on a variant of the one-dimensional small-world network (SWN). In the network structure considered, the probability of a shortcut falling between a pair of nodes is proportional to r−αr^{-\alpha}, where rr is the lattice distance between the nodes. When α=0\alpha =0, it reduces to the SWN model with random shortcuts. The system shows the dynamic small-world (SW) effect, which is different from the well-studied static SW effect. We study the effective network diameter, the path length as a function of the lattice distance, and the dynamics. They are controlled by multiple parameters, and we use data collapse to show that the parameters are correlated. The central finding is that, in the one-dimensional network studied, the dynamic SW effect exists for 0≀α≀20\leq \alpha \leq 2. For each given value of α\alpha in this region, the point that the dynamic SW effect arises is MLâ€Č∌1ML^{\prime}\sim 1, where MM is the number of useful shortcuts and Lâ€ČL^{\prime} is the average reduced (effective) length of them.Comment: 10 pages, 5 figures, accepted for publication in Physical Review

    The Fractional Quantum Hall States at Μ=13/5\nu=13/5 and 12/512/5 and their Non-Abelian Nature

    Full text link
    We investigate the nature of the fractional quantum Hall (FQH) state at filling factor Μ=13/5\nu=13/5, and its particle-hole conjugate state at 12/512/5, with the Coulomb interaction, and address the issue of possible competing states. Based on a large-scale density-matrix renormalization group (DMRG) calculation in spherical geometry, we present evidence that the physics of the Coulomb ground state (GS) at Μ=13/5\nu=13/5 and 12/512/5 is captured by the k=3k=3 parafermion Read-Rezayi RR state, RR3\text{RR}_3. We first establish that the state at Μ=13/5\nu=13/5 is an incompressible FQH state, with a GS protected by a finite excitation gap, with the shift in accordance with the RR state. Then, by performing a finite-size scaling analysis of the GS energies for Μ=12/5\nu=12/5 with different shifts, we find that the RR3\text{RR}_3 state has the lowest energy among different competing states in the thermodynamic limit. We find the fingerprint of RR3\text{RR}_3 topological order in the FQH 13/513/5 and 12/512/5 states, based on their entanglement spectrum and topological entanglement entropy, both of which strongly support their identification with the RR3\text{RR}_3 state. Furthermore, by considering the shift-free infinite-cylinder geometry, we expose two topologically-distinct GS sectors, one identity sector and a second one matching the non-Abelian sector of the Fibonacci anyonic quasiparticle, which serves as additional evidence for the RR3\text{RR}_3 state at 13/513/5 and 12/512/5.Comment: 12 pages, 8 figure

    Topological Characterization of Non-Abelian Moore-Read State using Density-Matrix Renormailzation Group

    Full text link
    The non-Abelian topological order has attracted a lot of attention for its fundamental importance and exciting prospect of topological quantum computation. However, explicit demonstration or identification of the non-Abelian states and the associated statistics in a microscopic model is very challenging. Here, based on density-matrix renormalization group calculation, we provide a complete characterization of the universal properties of bosonic Moore-Read state on Haldane honeycomb lattice model at filling number Μ=1\nu=1 for larger systems, including both the edge spectrum and the bulk anyonic quasiparticle (QP) statistics. We first demonstrate that there are three degenerating ground states, for each of which there is a definite anyonic flux threading through the cylinder. We identify the nontrivial countings for the entanglement spectrum in accordance with the corresponding conformal field theory. Through inserting the U(1)U(1) charge flux, it is found that two of the ground states can be adiabatically connected through a fermionic charge-e\textit{e} QP being pumped from one edge to the other, while the ground state in Ising anyon sector evolves back to itself. Furthermore, we calculate the modular matrices S\mathcal{S} and U\mathcal{U}, which contain all the information for the anyonic QPs. In particular, the extracted quantum dimensions, fusion rule and topological spins from modular matrices positively identify the emergence of non-Abelian statistics following the SU(2)2SU(2)_2 Chern-Simons theory.Comment: 5 pages; 3 figure

    Semantic web-based document: editing and browsing in AktiveDoc

    Get PDF
    This paper presents a tool for supporting sharing and reuse of knowledge in document creation (writing) and use (reading). Semantic Web technologies are used to support the production of ontology based annotations while the document is written. Free text annotations (comments) can be added to integrate the knowledge in the document. In addition the tool uses external services (e.g. a Semantic Web harvester) to propose relevant content to writing user, enabling easy knowledge reuse. Similar facilities are provided for readers when their task does not coincide with the author’s one. The tool is specifically designed for Knowledge Management in organisations. In this paper we present and discuss how Semantic Web technologies are designed and integrated in the system
    • 

    corecore