3,629 research outputs found

    Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra

    Get PDF
    In this paper we investigate Lie bialgebra structures on the twisted Heisenberg-Virasoro algebra. With the classifications of Lie bialgebra structures on the Virasoro algebra, we determined such structures on the twisted Heisenberg-Virasoro algebra. Moreover, some general and useful results are obtained. With our methods and results we also can easily to determine such structures on some Lie algebras related to the twisted Heisenberg-Virasoro algebra.Comment: Latex 18page. arXiv admin note: text overlap with arXiv:0901.133

    A note on the proof of magnetic flux quantization from ODLRO

    Full text link
    It is noticed that the excellent proof of the connection of magnetic flux quantization and off-diagonal long range order (ODLRO) presented recently by Nieh, Su and Zhao suffers from an imperfection, namely, the f-factors in the case of finite translation do not satisfy f(a)f(b)=f(a+b)f(a)f(b)=f(a+b), which was employed in the proof. A corrected proof is proposed to remedy this point.Comment: 6 pages, LATEX, no figure

    A Unified Query-based Paradigm for Camouflaged Instance Segmentation

    Full text link
    Due to the high similarity between camouflaged instances and the background, the recently proposed camouflaged instance segmentation (CIS) faces challenges in accurate localization and instance segmentation. To this end, inspired by query-based transformers, we propose a unified query-based multi-task learning framework for camouflaged instance segmentation, termed UQFormer, which builds a set of mask queries and a set of boundary queries to learn a shared composed query representation and efficiently integrates global camouflaged object region and boundary cues, for simultaneous instance segmentation and instance boundary detection in camouflaged scenarios. Specifically, we design a composed query learning paradigm that learns a shared representation to capture object region and boundary features by the cross-attention interaction of mask queries and boundary queries in the designed multi-scale unified learning transformer decoder. Then, we present a transformer-based multi-task learning framework for simultaneous camouflaged instance segmentation and camouflaged instance boundary detection based on the learned composed query representation, which also forces the model to learn a strong instance-level query representation. Notably, our model views the instance segmentation as a query-based direct set prediction problem, without other post-processing such as non-maximal suppression. Compared with 14 state-of-the-art approaches, our UQFormer significantly improves the performance of camouflaged instance segmentation. Our code will be available at https://github.com/dongbo811/UQFormer.Comment: This paper has been accepted by ACM MM202

    Chronic Stress Facilitates the Development of Deep Venous Thrombosis

    Get PDF
    The increasing pressure of modern social life intensifies the impact of stress on the development of cardiovascular diseases, which include deep venous thrombosis (DVT). Renal sympathetic denervation has been applied as one of the clinical approaches for the treatment of drug-resistant hypertension. In addition, the close relationship between oxidative stress and cardiovascular diseases has been well documented. The present study is designed to explore the mechanism by which the renal sympathetic nerve system and the oxidative stress affect the blood coagulation system in the development of DVT. Chronic foot shock model in rats was applied to mimic a state of physiological stress similar to humans. Our results showed that chronic foot shock procedure could promote DVT which may be through the activation of platelets aggregation. The aggravation of DVT and activation of platelets were alleviated by renal sympathetic denervation or antioxidant (Tempol) treatment. Concurrently, the denervation treatment could also reduce the levels of circulating oxidation factors in rats. These results demonstrate that both the renal sympathetic nerve system and the oxidative stress contribute to the development of DVT in response to chronic stress, which may provide novel strategy for treatment of clinic DVT patients

    [3,5-Bis(benz­yloxy)phen­yl]methanol

    Get PDF
    In the title compound, C21H20O3, the two terminal phenyl rings are each approximately perpendicular to the central benzene ring, making dihedral angles of 84.40 (16) and 75.12 (15)°. The H atom of the hydr­oxy group is disordered over two positions with equal occupancies. The mol­ecules are linked by O—H⋯O hydrogen bonds, forming a chain along the a axis

    Quench of a Single-Layer ReBCO CORC Cable with Non-Uniform Terminal Contact Resistance

    Get PDF
    ReBCO conductor-on-round-core (CORC) cable has become a promising candidate for high temperature superconducting (HTS) power applications, due to its great mechanical strength, high current carrying capacity, high flexibility, and low ac losses. However, ReBCO coated conductors are at risk of quenching, which significantly affects the thermal stability and reliability of the CORC cable. Three-dimensional (3-D) numerical study on the quench behavior of the CORC cable remains a challenge, for its complex geometry is difficult to cope with. In this paper, a 3-D time-dependent multi-physics quench model based on the T-A formulation has been developed. Three modules are coupled in this model; the T-A formulation model, a heat transfer model, and an equivalent circuit model. The quench behavior of a single-layer ReBCO CORC cable with non-uniform terminal contact resistances has been studied, when a hotspot is imposed on one of the tapes to induce a local quench. Results show that, the CORC cable has the highest MQE; in other words, it is the most stable situation, when the hotspot-induced quench occurs on the tape with the middle value of terminal contact resistance

    Observing parity-time symmetry in diffusive systems

    Full text link
    Phase modulation has scarcely been mentioned in diffusive systems since the diffusion process does not carry momentum like waves. Recently, the non-Hermitian physics provides a new perspective for understanding diffusion and shows prospects in the phase regulation of heat flow, for example, the discovery of anti-parity-time (APT) symmetry in diffusive systems. The precise control of thermal phase however remains elusive hitherto and can hardly be realized in APT-symmetric thermal systems due to the existence of phase oscillation. Here we construct the counterpart of APT-symmetric diffusive systems, i.e., PT-symmetric diffusive systems, which can achieve complete suppression of thermal phase oscillation. We find the real coupling of diffusive fields can be readily established through a strong convective background, where the decay-rate detuning is enabled by thermal metamaterial design. Moreover, we observe phase transition of PT symmetry breaking in diffusive systems with the symmetry-determined amplitude distribution and phase regulation of coupled temperature fields. Our work uncovers the existence of PT-symmetry in dissipative energy exchanges and provides a unique approach for harnessing the mass transfer of particles, the wave propagation in strongly scattering systems as well as thermal conduction
    corecore