77,557 research outputs found
Robust variable selection in partially varying coefficient single-index model
By combining basis function approximations and smoothly clipped absolute deviation (SCAD) penalty, this paper proposes a robust variable selection procedure for a partially varying coefficient single-index model based on modal regression. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the theoretical properties of our procedure, including consistency in variable selection and the oracle property in estimation. Furthermore, we also discuss the bandwidth selection and propose a modified expectation-maximization (EM)-type algorithm for the proposed estimation procedure. The finite sample properties of the proposed estimators are illustrated by some simulation examples.The research of Zhu is partially supported by National Natural Science Foundation of China (NNSFC) under Grants 71171075, 71221001 and 71031004. The research of Yu is supported by NNSFC under Grant 11261048
Overall properties of the Gaia DR1 reference frame
We compare quasar positions of the auxiliary quasar solution with ICRF2
sources using different samples and evaluate the influence on the {\it Gaia}
DR1 reference frame owing to the Galactic aberration effect over the
J2000.0-J20015.0 period. Then we estimate the global rotation between TGAS with
{\it Tycho}-2 proper motion systems to investigate the property of the {\it
Gaia} DR1 reference frame. Finally, the Galactic kinematics analysis using the
K-M giant proper motions is performed to understand the property of {\it Gaia}
DR1 reference frame. The positional comparison between the auxiliary quasar
solution and ICRF2 shows negligible orientation and validates the declination
bias of \mas~in {\it Gaia} quasar positions with respect to ICRF2.
Galactic aberration effect is thought to cause an offset \mas~of
the axis direction of {\it Gaia} DR1 reference frame. The global rotation
between TGAS and {\it Tycho}-2 proper motion systems, obtained by different
samples, shows a much smaller value than the claimed value \masyr. For
the Galactic kinematics analysis of the TGAS K-M giants, we find possible
non-zero Galactic rotation components beyond the classical Oort constants: the
rigid part \masyr~and the differential part
\masyr~around the axis of Galactic
coordinates, which indicates possible residual rotation in {\it Gaia} DR1
reference frame or problems in the current Galactic kinematical model.Comment: 6 pages, 1 figure. Accepted for publication in A&
Forest Species Identification with High Spectral Resolution Data
Data collected over the Sleeping Bear Sand Dunes Test Site and the Saginaw Forest Test Site (Michigan) with the JPL Airborne Imaging Spectrometer and the Collins' Airborne Spectroradiometer are being used for forest species identification. The linear discriminant function has provided higher identification accuracies than have principal components analyses. Highest identification accuracies are obtained in the 450 to 520 nm spectral region. Spectral bands near 1,300, 1,685 and 2,220 nm appear to be important, also
Enhancement of vortex pinning in superconductor/ferromagnet bilayers via angled demagnetization
We use local and global magnetometry measurements to study the influence of
magnetic domain width w on the domain-induced vortex pinning in
superconducting/ferromagnetic bilayers, built of a Nb film and a ferromagnetic
Co/Pt multilayer with perpendicular magnetic anisotropy, with an insulating
layer to eliminate proximity effect. The quasi-periodic domain patterns with
different and systematically adjustable width w, as acquired by a special
demagnetization procedure, exert tunable vortex pinning on a superconducting
layer. The largest enhancement of vortex pinning, by a factor of more than 10,
occurs when w ~ 310 nm is close to the magnetic penetration depth.Comment: 5 pages, 3 figures, accepted to Phys. Rev. B, Rapid Communication
A data assimilation method of the Ensemble Kalman Filter for use in severe dust storm forecasts over China
International audienceAn Ensemble Kalman Filter (EnKF) data assimilation system was developed for a regional dust transport model. This paper applied the EnKF method to investigate modeling severe dust storm episodes occurred in March 2002 over China based on surface observations of dust concentrations to explore its impacts on forecast improvement. A series of sensitivity experiments using our system reveals that the EnKF is an advanced assimilation method to afford better initial conditions with surface observed PM10 in North China and lead to improved forecasts of dust storms, but forecast with large errors can be made by model errors. This result illustrates that it requires identifying and correcting model errors during the assimilation procedure in order to significantly improve forecasts. Results also show that the EnKF should use a large inflation parameter to obtain better model performance and forecast potential. Furthermore, the ensemble perturbations generated at the initial time should include enough ensemble spreads to represent the background error after several assimilation cycles
- …
