66,678 research outputs found

    Gravitational Lensing Statistics as a Probe of Dark Energy

    Get PDF
    By using the comoving distance, we derive an analytic expression for the optical depth of gravitational lensing, which depends on the redshift to the source and the cosmological model characterized by the cosmic mass density parameter Ωm\Omega_m, the dark energy density parameter Ωx\Omega_x and its equation of state ωx=px/ρx\omega_x = p_x/\rho_x. It is shown that, the larger the dark energy density is and the more negative its pressure is, the higher the gravitational lensing probability is. This fact can provide an independent constraint for dark energy.Comment: 9 pages, 2 figure

    Time-dependent Fr\"ohlich transformation approach for two-atom entanglement generated by successive passage through a cavity

    Full text link
    Time-dependent Fr\"ohlich transformations can be used to derive an effective Hamiltonian for a class of quantum systems with time-dependent perturbations. We use such a transformation for a system with time-dependent atom-photon coupling induced by the classical motion of two atoms in an inhomogeneous electromagnetic field. We calculate the entanglement between the two atoms resulting from their motion through a cavity as a function of their initial position difference and velocity.Comment: 7 pages, 3 figure

    Gravitational lensing statistical properties in general FRW cosmologies with dark energy component(s): analytic results

    Get PDF
    Various astronomical observations have been consistently making a strong case for the existence of a component of dark energy with negative pressure in the universe. It is now necessary to take the dark energy component(s) into account in gravitational lensing statistics and other cosmological tests. By using the comoving distance we derive analytic but simple expressions for the optical depth of multiple image, the expected value of image separation and the probability distribution of image separation caused by an assemble of singular isothermal spheres in general FRW cosmological models with dark energy component(s). We also present the kinematical and dynamical properties of these kinds of cosmological models and calculate the age of the universe and the distance measures, which are often used in classical cosmological tests. In some cases we are able to give formulae that are simpler than those found elsewhere in the literature, which could make the cosmological tests for dark energy component(s) more convenient.Comment: 14 pages, no figure, Latex fil

    Quantum anti-Zeno effect without rotating wave approximation

    Get PDF
    In this paper, we systematically study the spontaneous decay phenomenon of a two-level system under the influences of both its environment and continuous measurements. In order to clarify some well-established conclusions about the quantum Zeno effect (QZE) and the quantum anti-Zeno effect (QAZE), we do not use the rotating wave approximation (RWA) in obtaining an effective Hamiltonian. We examine various spectral distributions by making use of our present approach in comparison with other approaches. It is found that with respect to a bare excited state even without the RWA, the QAZE can still happen for some cases, e.g., the interacting spectra of hydrogen. But for a physical excited state, which is a renormalized dressed state of the atomic state, the QAZE disappears and only the QZE remains. These discoveries inevitably show a transition from the QZE to the QAZE as the measurement interval changes.Comment: 14 pages, 8 figure

    Evidence for spin-flip scattering and local moments in dilute fluorinated graphene

    Full text link
    The issue of whether local magnetic moments can be formed by introducing adatoms into graphene is of intense research interest because it opens the window to fundamental studies of magnetism in graphene, as well as of its potential spintronics applications. To investigate this question we measure, by exploiting the well-established weak localization physics, the phase coherence length L_phi in dilute fluorinated graphene. L_phi reveals an unusual saturation below ~ 10 K, which cannot be explained by non-magnetic origins. The corresponding phase breaking rate increases with decreasing carrier density and increases with increasing fluorine density. These results provide strong evidence for spin-flip scattering and points to the existence of adatom-induced local magnetic moment in fluorinated graphene. Our results will stimulate further investigations of magnetism and spintronics applications in adatom-engineered graphene.Comment: 9 pages, 4 figures, and supplementary materials; Phys. Rev. Lett. in pres

    Colossal negative magnetoresistance in dilute fluorinated graphene

    Get PDF
    Adatoms offer an effective route to modify and engineer the properties of graphene. In this work, we create dilute fluorinated graphene using a clean, controlled and reversible approach. At low carrier densities, the system is strongly localized and exhibits an unexpected, colossal negative magnetoresistance. The zero-field resistance is reduced by a factor of 40 at the highest field of 9 T and shows no sign of saturation. Unusual "staircase" field dependence is observed below 5 K. The magnetoresistance is highly anisotropic. We discuss possible origins, considering quantum interference effects and adatom-induced magnetism in graphene.Comment: 21 pages, 4 figures, including supplementary informatio
    corecore