106,974 research outputs found

    Spin-dependent Fano resonance induced by conducting chiral helimagnet contained in a quasi-one-dimensional electron waveguide

    Full text link
    Fano resonance appears for conduction through an electron waveguide containing donor impurities. In this work, we consider the thin-film conducting chiral helimagnet (CCH) as the donor impurity in a one-dimensional waveguide model. Due to the spin spiral coupling, interference between the direct and intersubband transmission channels gives rise to spin-dependent Fano resonance effect. The spin-dependent Fano resonance is sensitively dependent on the helicity of the spiral. By tuning the CCH potential well depth and the incident energy, this provides a potential way to detect the spin structure in the CCH.Comment: 14 pages, 6 figure

    Description of Charged Particle Pseudorapidity Distributions in Pb+Pb Collisions with Tsallis Thermodynamics

    Full text link
    The centrality dependence of pseudorapidity distributions for charged particles produced in Au+Au collisions at sNN=130\sqrt{s_{NN}}=130 GeV and 200 GeV at RHIC, and in Pb+Pb collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV at LHC are investigated in the fireball model, assuming that the rapidity axis is populated with fireballs following one distribution function. We assume that the particles in the fireball fulfill the Tsallis distribution. The theoretical results are compared with the experimental measurements and a good agreement is found. Using these results, the pseudorapidity distributions of charged particles produced in Pb+Pb central collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV and 10 TeV are predicted.Comment: 9 pages, 8 figure

    Topography of Spin Liquids on a Triangular Lattice

    Full text link
    Spin systems with frustrated anisotropic interactions are of significant interest due to possible exotic ground states. We have explored their phase diagram on a nearest-neighbor triangular lattice using the density-matrix renormalization group and mapped out the topography of the region that can harbor a spin liquid. We find that this spin-liquid phase is continuously connected to a previously discovered spin-liquid phase of the isotropic J1 ⁣ ⁣J2J_1\!-\!J_2 model. The two limits show nearly identical spin correlations, making the case that their respective spin liquids are isomorphic to each other.Comment: Accepted to PRL; 5 p., 11+ p. supplemental; main text is longer than the accepted versio

    Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO4_4

    Full text link
    We suggest that a randomization of the pseudo-dipolar interaction in the spin-orbit-generated low-energy Hamiltonian of YbMgGaO4_4 due to an inhomogeneous charge environment from a natural mixing of Mg2+^{2+} and Ga3+^{3+} can give rise to orientational spin disorder and mimic a spin-liquid-like state. In the absence of such quenched disorder, 1/S1/S and density matrix renormalization group calculations both show robust ordered states for the physically relevant phases of the model. Our scenario is consistent with the available experimental data and further experiments are proposed to support it.Comment: 5+ main text, 7+ supplemental, text asymptotically close to PR

    Spin and Current Variations in Josephson Junctions

    Get PDF
    We study the dynamics of a single spin embedded in the tunneling barrier between two superconductors. As a consequence of pair correlations in the superconducting state, the spin displays rich and unusual dynamics. To properly describe the time evolution of the spin we derive the effective Keldysh action for the spin. The superconducting correlations lead to an effective spin action, which is non-local in time, leading to unconventional precession. We further illustrate how the current is modulated by this novel spin dynamics

    Self-organized critical behavior: the evolution of frozen spin networks model in quantum gravity

    Full text link
    In quantum gravity, we study the evolution of a two-dimensional planar open frozen spin network, in which the color (i.e. the twice spin of an edge) labeling edge changes but the underlying graph remains fixed. The mainly considered evolution rule, the random edge model, is depending on choosing an edge randomly and changing the color of it by an even integer. Since the change of color generally violate the gauge invariance conditions imposed on the system, detailed propagation rule is needed and it can be defined in many ways. Here, we provided one new propagation rule, in which the involved even integer is not a constant one as in previous works, but changeable with certain probability. In random edge model, we do find the evolution of the system under the propagation rule exhibits power-law behavior, which is suggestive of the self-organized criticality (SOC), and it is the first time to verify the SOC behavior in such evolution model for the frozen spin network. Furthermore, the increase of the average color of the spin network in time can show the nature of inflation for the universe.Comment: 5 pages, 5 figure
    corecore