361 research outputs found

    Distributed Least Squares Algorithm for Continuous-time Stochastic Systems Under Cooperative Excitation Condition

    Full text link
    In this paper, we study the distributed adaptive estimation problem of continuous-time stochastic dynamic systems over sensor networks where each agent can only communicate with its local neighbors. A distributed least squares (LS) algorithm based on diffusion strategy is proposed such that the sensors can cooperatively estimate the unknown time-invariant parameter vector from continuous-time noisy signals. By using the martingal estimation theory and Ito formula, we provide upper bounds for the estimation error of the proposed distributed LS algorithm, and further obtain the convergence results under a cooperative excitation condition. Compared with the existing results, our results are established without using the boundedness or persistent excitation (PE) conditions of regression signals. We provide simulation examples to show that multiple sensors can cooperatively accomplish the estimation task even if any individual can not

    Clinical Characteristics of Patients with Micrococcus luteus Bloodstream Infection in a Chinese Tertiary-Care Hospital

    Get PDF
    Few pieces of research have focused on Micrococcus luteus bloodstream infection (BSI) because of its low incidence; hence data is needed to illustrate this uncommon infection. This study aimed to explore the clinical characteristics of patients with M. luteus BSI. From January 2010 to December 2019, inpatients that met the criteria for M. luteus BSI were included in this study. Data was collected by reviewing electronic records. Ninety-seven patients were enrolled in this study. Sixty-three percent of the patients have a higher neutrophil percentage (NEUT%). The average blood C-reactive protein (CRP) concentration was 5.5 ± 6.4 mg/dl. 48.5% of the patients had malignancy, and 40.2% underwent invasive surgeries. Linezolid was found to have the largest average diameter of the inhibition zone (36 mm), while erythromycin was found to have the smallest average zone diameter (15 mm). However, some M. luteus strains had a potentially broad antimicrobial resistance spectrum. Cephalosporins (59.2%) and quinolones (21.4%) were the most commonly used antibiotics for empirical therapies. In conclusion, M. luteus BSI mainly happens in immunocompromised patients or those with former invasive surgeries or indwelling catheters. M. luteus strains are less responsive to erythromycin. Cephalosporins and quinolones are effective empirical antibiotics for M. luteus BSI; however, vancomycin and teicoplanin should be considered for potentially broadly drug-resistant M. luteus strains

    Consistent Multimodal Generation via A Unified GAN Framework

    Full text link
    We investigate how to generate multimodal image outputs, such as RGB, depth, and surface normals, with a single generative model. The challenge is to produce outputs that are realistic, and also consistent with each other. Our solution builds on the StyleGAN3 architecture, with a shared backbone and modality-specific branches in the last layers of the synthesis network, and we propose per-modality fidelity discriminators and a cross-modality consistency discriminator. In experiments on the Stanford2D3D dataset, we demonstrate realistic and consistent generation of RGB, depth, and normal images. We also show a training recipe to easily extend our pretrained model on a new domain, even with a few pairwise data. We further evaluate the use of synthetically generated RGB and depth pairs for training or fine-tuning depth estimators. Code will be available at https://github.com/jessemelpolio/MultimodalGAN.Comment: In revie

    Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study

    Get PDF
    Bimetallic NiFe catalysts have emerged as a promising alternative to the traditional Ni catalysts for CO2 methanation. However, the promoting effect of Fe on the bimetallic catalysts remains ambiguous. In this study, a series of NiFe catalysts derived from hydrotalcite precursors were investigated. In situ x-ray diffraction (XRD) analysis revealed that small NiFe alloy particles were formed and remained stable during reaction. When Fe/Ni = 0.25, the alloy catalysts exhibited the highest CO2 conversion, CH4 selectivity and stability in CO2 methanation at low temperature of 250–350 °C. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) study indicated that the formate pathway was the most plausible reaction scheme on both Ni and NiFe alloy catalysts, while a moderate addition of Fe facilitated the activation of CO2 via hydrogenation to *HCOO. Density functional theory (DFT) calculations further demonstrated that the overall energy barrier for CH4 formation was lower on the alloy surface.publishedVersio

    Interaction of influenza virus NS1 protein with growth arrest-specific protein 8

    Get PDF
    NS1 protein is the only non-structural protein encoded by the influenza A virus, and it contributes significantly to disease pathogenesis by modulating many virus and host cell processes. A two-hybrid screen for proteins that interact with NS1 from influenza A yielded growth arrest-specific protein 8. Gas8 associated with NS1 in vitro and in vivo. Deletion analysis revealed that the N-terminal 260 amino acids of Gas8 were able to interact with NS1, and neither the RNA-binding domain nor the effector domain of NS1 was sufficient for the NS1 interaction. We also found that actin, myosin, and drebrin interact with Gas8. NS1 and β-actin proteins could be co-immunoprecipitated from extracts of transfected cells. Furthermore, actin and Gas8 co-localized at the plasma membrane. These results are discussed in relation to the possible functions of Gas8 protein and their relevance in influenza virus release

    Nitrogen doping in the carbon matrix for Li-ion hybrid supercapacitors: state of the art, challenges and future prospective

    Get PDF
    Li-ion hybrid supercapacitors (LiHSCs) have emerged as an extremely attractive energy storage system by combining the prime advantages of Li-ion batteries and supercapacitors. As a common electrode material in both lithium ion batteries and supercapacitors, graphene and activated carbons offer a tunable porous structure with high chemical, thermal and physical stability, which in turn results in excellent electronic conductivity and improved capacity as compared with the other electrodes. Elemental nitrogen doping in graphene and activated carbons is believed to further improve their performance. In this review, the state of the art of hybrid supercapacitors is briefly summarized with an emphasis on the use of graphene and activated carbons. Subsequent doping of graphene and activated carbons with nitrogen in LiHSCs is also emphasized

    Adaptive Radio Frequency Interference Mitigation for Passive Bistatic Radar Using OFDM Waveform

    Get PDF
    High frequency passive bistatic radar (HFPBR) is a novel and promising technique in development. DRM broadcast exploiting orthogonal frequency division multiplexing (OFDM) technique supplies a good choice for the illuminator of HFPBR. HFPBR works in crowded short wave band. It faces severe radio frequency interference (RFI) problem. In this paper, a theoretical analysis of the range-domain correlation of RFI in OFDM-based HF radar is presented. A RFI mitigation method in the range domain is introduced. After the direct-path wave rejection, the interference subspace is constructed using the echo signals at the reserved range bins. Then RFI in the effective range bins is mitigated by the subspace projection, using the correlation among different range bins. The introduced algorithm is easy to perform in practice and the RFI mitigation performance is evaluated using the experimental data of DRM-based HFPBR
    • …
    corecore