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High frequency passive bistatic radar (HFPBR) is a novel and promising technique in development. DRM broadcast exploiting
orthogonal frequency division multiplexing (OFDM) technique supplies a good choice for the illuminator of HFPBR. HFPBR
works in crowded short wave band. It faces severe radio frequency interference (RFI) problem. In this paper, a theoretical analysis
of the range-domain correlation of RFI in OFDM-based HF radar is presented. A RFI mitigation method in the range domain is
introduced. After the direct-path wave rejection, the interference subspace is constructed using the echo signals at the reserved
range bins. Then RFI in the effective range bins is mitigated by the subspace projection, using the correlation among different
range bins. The introduced algorithm is easy to perform in practice and the RFI mitigation performance is evaluated using the
experimental data of DRM-based HFPBR.

1. Introduction

HF passive bistatic radars (HFPBR) are a subset of bistatic
radars exploiting noncooperative HF transmitters of oppor-
tunity. They have gained more and more attention in
detecting low-flying and ocean ship targets as well as some
remote sensing applications, for their advantages of both PBR
(including having lower cost, being harder to detect, and
being capable of directly and naturally facing the spectral
compatibility issue) and HF over-the-horizon radars [1].
Digital broadcast is taking the place of traditional analog
broadcast.With the trend of this,much research and develop-
ment have been invested in PBR exploiting digital broadcast
transmitters as a surveillance sensor in recent years [1–5].
DRM broadcast exploiting orthogonal frequency division
multiplexing (OFDM) is accepted as the only standard forHF
band by ITU-R, which has got rapid development globally,
especially in Europe, in past years [6–8]. The use of OFDM
signal provides frequency diversity to the system [9, 10].
DRM broadcast transmitter supplies good choices for the
illuminator of HFPBR system, owing to its good signal
properties and excellent low-altitude coverage.

RFI is introduced in HF radar since the frequency
band 3–30MHz is shared by many radio services. It is also

inevitable for HFPBR because DRM broadcasts have to share
the usage of the current equipment and frequency bands
of the analog transmission systems over a period of time
called transition period. In HFPBR, surveillance and refer-
ence channels are needed to receive echoes of interest and
reference signal, respectively. RFI will raise up the noise floor
of the range-Doppler (RD) plot after the two-dimensional
cross-correlation function (2D-CCF) when appearing in the
surveillance channel. When the RFI to target echo ratio
increases, target’s peak-to-noise-floor ratio will decrease or
the target would be masked completely [11]. Thus, RFI will
lead to performance deterioration.

However, RFI problem in HFPBR is mentioned a little in
the open literature. Many temporal or time-frequency tech-
niques are also discussed to remove RFI in HF active radar
systems, but they are based on chirp signals or others [12–
15]. In this paper, RFI inOFDM-basedHFPBR is investigated.
OFDM technique is a multicarrier modulation method with
up to hundreds of subcarriers. For HFPBR systems with
OFDM waveform, RFI will show different characteristics,
because the radar waveform of PBR is new and different,
which exploits OFDM technique and is originally designed
for broadcasting. Thus the RFI model should be reanalyzed
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during PBR signal processing and then a suitable method
can be proposed. In this paper, a theoretical analysis of the
range-domain correlation of RFI in OFDM-based HF radar
is presented. The results provide a theoretical basis for RFI
mitigation in the range domain. So a new RFI mitigation
method is introduced. RFI is assumed stationary along each
range swath and for a subset of slow-time data. First, after
the direct-path wave is rejected, the echo signals at the
far range bins seemed to only have the interference and
noise, without the sea echo or target. Then the interference
subspace is constructed using the echo signals at far range
bins. Finally, RFI in the effective range bins is mitigated
by projecting them onto the orthogonal subspace of the
interference subspace, using the correlation among different
range bins. The introduced method is easy to perform in
practice and has been evaluated using the experimental data
of DRM-based HFPBR.

This paper is organized as follows. Based on the signal
processing diagram andwaveformof PBR systems, the range-
domain correlation ofRFI inOFDM-basedPBR is introduced
in Section 2. The new RFI mitigation method is presented
in Section 3. The analysis results on real data are given in
Section 4 and conclusions are drawn in Section 5.

2. Range-Domain Correlation of RFI in
OFDM-Based PBR

The RFI characteristics in radar signals are closely related
to the waveform used by the radar system and the radar
signal processing scheme. According to the signal processing
scheme for HFPBR with OFDM waveform given in [11], the
echo signals are filtered by thematching filter of the reference
signal to acquire the echo signals at each range bin.

OFDM technique is exploited in DRM broadcast to cope
with the complex environment in HF band. The transmitted
baseband complex-envelopeDRM signal during each symbol
interval can be described by the following expression [16]:
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where the superscript ∗ denotes conjugate operation.

Thus the output of the range correlation of the RFI can be
expressed as
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It also shows that the interference after range correlation
extends to all range bins.

The correlation function of the interference in the range
domain can be written as
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where 𝐸{⋅} is the expectation operator. Obviously, the corre-
sponding power spectrum is |𝐶

𝑘
𝑁(𝑓
𝑘
)|
2. It shows that the

correlation time of the incident inference is related to infer-
ence bandwidth 𝐵

𝑛
and the distribution of the modulated

complex cell value 𝐶
𝑘
. Obviously, owing to the different

waveform, the relevant result of RFI in OFDM-based passive
radar is different from the one in chirp signal-based radar
[15].

3. RFI Mitigation

The above analysis provides a theoretical basis for RFI
mitigation in the range bin. As in DRM-based HFPBR,
the mean of |𝐶

𝑘
| is 1 and the variance is also very small.

Then the correlation time of the incident inference can be
approximated as 𝜏

𝑛
≈ 1/𝐵

𝑛
. Thus as long as the interference

bandwidth is relatively small, the interference will be corre-
lated over a large number of range bins which is more than
the effective detection range bins, and it ensures the efficiency
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Figure 1: Flow chart of processing steps for RFI mitigation.

of the range-domain mitigation. An orthogonal projection
filtering method for RFI mitigation in HFPBR is introduced
in the following. The processing diagram is given in Figure 1.

In PBR, the strength of the direct-path wave can often be
so strong tomask target echoes or RFI echoes. To uncover the
RFI signal in the range domain, the direct-path wave should
be rejected first. Then the surveillance signal and reference
baseband signal are processed by range correlation to get
different range bin samples.

Assume all the slow-time samples at 𝑛th range bin to be
X
𝑛
= [𝑥
𝑛
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(2), . . . , 𝑥
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(𝑀)]
𝑇, with𝑀 being the number

of slow-time sample instants, where 𝑛 is from 0 to maximum
range bin number. It is known that the sea echoes and target
signals attenuate greatly when the range increases, while the
interference extends to all range bins with the power being
independent of the range [13]. Assume the effective range bin
is from 0 to𝑁

0
−1; namely, the echoes of interest only occupy

𝑁
0
range bins. There exists a reserved range segment where

the range bin is far away from 𝑁
0
but within the maximum

range bin. And at the reserved range bins, it can be seen that
there are only the interference and noise and no sea echo or
target.

Assume the reserved range bins number is from𝑁
1
to𝑁
2
.
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2
should be larger than𝑁
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correlation matrix of the interference in the range domain as
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where the superscript 𝐻 denotes the conjugate transpose
operator. Additionally, some advanced covariance matrix
estimators could be used instead of the sample covariance
to exploit information usually available at the receiver, such
as the level of the white noise, the condition number of the
matrix, and the effective rank, and achieve enhanced estimate
[17–19].Then the eigenvalue decomposition of the correlation
matrix can be obtained as follows:
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there are only the interference and noise at the reserved range
bins, we can assume that 𝐿 relatively larger eigenvector is the
corresponding interference eigenvalues and U
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are corresponding interference eigenvectors. Thus we can
construct the interference subspace as V = [U
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, . . . ,U
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Then the signals at effective range bins can be projected
onto the orthogonal subspace of V to mitigate the interfer-
ence. And the new signals at the effective range bins after
interference mitigation X

𝑛,supp (𝑛 = 0, . . . , 𝑁0 − 1) are given
by

X
𝑛,supp = (I − VV

𝐻

)X
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By the way, to mitigate the nonstationary RFI, short-time
interference subspaces can be calculated in place of the global
one, to do orthogonal projection filtering.

4. Real Data Results

The introduced method was used in the practical DRM-
based HFPBR experiment data. The experiment data was
collected by the PBR system of Wuhan University, during
August 2011. The radar system worked at a frequency of
8MHz. The cooperative DRM broadcast transmitter was
located in Qingdao City, along the east coast of Shandong
Province, China.The receiving antenna array consisted of 16-
element passive monopole helical antennas. The 16-element
linear receiving array was placed along the coastline in
Yantai City, Shandong Province, China, which was about
50 km far away from the transmitter whose peak power was
about 500W. So the system worked in a surface wave mode.
After being processed by mixing, amplifying, and filtering
in the analog frontend, the 16-element received signals were
digitalized by the analog-to-digital converter. After digital
downconversion, the data were processed on the platform
and recorded in the disk array for offline analysis. In order
to evaluate the performance of the introduced interference
mitigationmethod, just one segment of the experimental data
for this study is demonstrated.

The reference signal and the surveillance signal are
obtained by making the receiving antenna array beam steer
toward the transmitter and targets, respectively. And the
sampling rate was 24 kHz and the coherent integration time
is about 256 s, with 𝑀 = 512. Figure 2 gives the RD map
before direct-path wave rejection. The direct-path wave is
too strong to show RFI or echoes of interest. Figure 3 shows
the range spectrum after direct-path wave rejection by the
minimumvariance distortionless response (MVDR) adaptive
beamformer [1], which shows that RFIs present as the bands
arranged along the range bins in many time samples (about
58, from 165 to 175 and so on). Figure 4 shows the RD plot
after direct-path wave rejection. As apparent, after the direct-
path wave is rejected, the advancing and receding Bragg lines
of sea echo can be seen. However, RFI covered a majority
of the whole map, including the sea echoes’ Bragg spectral
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region. The orthogonal projection algorithm was used to
mitigate the interference.

Figures 5 and 6 show the frequency spectra of time
samples 58 and 167 appearing in RFI, respectively.We can see
that the interference bandwidth is very small, not more than
300Hz. It means that the correlation time is about 1/300 s,
corresponding to 80 range bins. The effective detection
bistatic range designed was 500 km corresponding to 40
range bins. So we select range bin indexed 50 to 80 as the
reserved range bins. Figure 7 gives the eigenspectrum of the
correlation function of signals at the reserved range bins.
Here only the largest 32 eigenvalues were displayed.

Figure 8 gives the range spectrum after the effective
range bins orthogonally projected onto the subspace. Here,
the global interference subspace is calculated. It shows that
the RFI is effectively mitigated by comparing Figures 8
and 3. Figure 9 presents the range bin 8 cuts with suspect
vessel before and after RFI mitigation, from which we can
also see that the spectral floor is assumed to be flat. The
average interference suppression is about 5 dB. And Figure 10
presents the range bin 40 cuts before and after RFImitigation,
where the interference mitigation effect is more obvious.
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5. Conclusions

The RFI issues in HFPBR with OFDM waveform are inves-
tigated in this paper. For OFDM-based PBR, RFI in the
surveillance channel is distributed regularly on the RD plot,
which may mask targets as what the direct-path wave and
multipath clutter do. A theoretical analysis of the range-
domain correlation function of RFI in OFDM waveform
passive radar is presented. The analysis provides theory basis
for the proposal of a new RFI mitigation method in range
domain.The method can mitigate RFI while almost bringing
no loss to the echo signal of interest, which will greatly
enhance the detection performance of HFPBR. The method
is easy to perform. It can also be applied to other PBR with
OFDM waveform. The experimental results have verified
the theoretical analysis of the RFI and the validity of the
introduced RFI mitigation method.
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