19,461 research outputs found

    Comparing the Tsallis distribution with and without thermodynamical description in p+p collisions

    Get PDF
    We compare two types of Tsallis distribution, i.e., with and without thermodynamical description, using the experimental data from the STAR, PHENIX, ALICE and CMS Collaborations on the rapidity and energy dependence of the transverse momentum spectra in p+p collisions. Both of them can give us the similar fitting power to the particle spectra. We show that the Tsallis distribution with thermodynamical description gives lower temperatures than the ones without it. The extra factor mTm_T (transverse mass) in the Tsallis distribution with thermodynamical description plays an important role in the discrepancies between the two types of Tsallis distribution. But for the heavy particles, the choice to use the mTm_T or ETE_T (transverse energy) in the Tsallis distribution becomes more crucial.Comment: 9 pages, 5 figure

    Systematic analysis of hadron spectra in p+p collisions using Tsallis distribution

    Get PDF
    Using the experimental data from the STAR, PHENIX, ALICE and CMS programs on the rapidity and energy dependence of the pTp_T spectra in p+p collisions, we show that a universal distribution exists. The energy dependence of temperature TT and parameter nn of the Tsallis distribution are also discussed in detail. A cascade particle production mechanism in p+p collisions is proposed.Comment: 13 pages, 8 figure

    Description of Charged Particle Pseudorapidity Distributions in Pb+Pb Collisions with Tsallis Thermodynamics

    Full text link
    The centrality dependence of pseudorapidity distributions for charged particles produced in Au+Au collisions at sNN=130\sqrt{s_{NN}}=130 GeV and 200 GeV at RHIC, and in Pb+Pb collisions at sNN=2.76\sqrt{s_{NN}}=2.76 TeV at LHC are investigated in the fireball model, assuming that the rapidity axis is populated with fireballs following one distribution function. We assume that the particles in the fireball fulfill the Tsallis distribution. The theoretical results are compared with the experimental measurements and a good agreement is found. Using these results, the pseudorapidity distributions of charged particles produced in Pb+Pb central collisions at sNN=5.02\sqrt{s_{NN}}=5.02 TeV and 10 TeV are predicted.Comment: 9 pages, 8 figure

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed

    Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly

    Get PDF
    There has been considerable progress in the design and construction of quantum annealing devices. However, a conclusive detection of quantum speedup over traditional silicon-based machines remains elusive, despite multiple careful studies. In this work we outline strategies to design hard tunable benchmark instances based on insights from the study of spin glasses - the archetypal random benchmark problem for novel algorithms and optimization devices. We propose to complement head-to-head scaling studies that compare quantum annealing machines to state-of-the-art classical codes with an approach that compares the performance of different algorithms and/or computing architectures on different classes of computationally hard tunable spin-glass instances. The advantage of such an approach lies in having to only compare the performance hit felt by a given algorithm and/or architecture when the instance complexity is increased. Furthermore, we propose a methodology that might not directly translate into the detection of quantum speedup, but might elucidate whether quantum annealing has a "`quantum advantage" over corresponding classical algorithms like simulated annealing. Our results on a 496 qubit D-Wave Two quantum annealing device are compared to recently-used state-of-the-art thermal simulated annealing codes.Comment: 14 pages, 8 figures, 3 tables, way too many reference

    A Novel Optimal Mapping Algorithm With Less Computational Complexity for Virtual Network Embedding

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Network Virtualization (NV) is widely accepted as one enabling technology for future network, which enables multiple Virtual Networks (VNs) with different paradigms and protocols to coexist on the shared Substrate Network (SN). One key challenge in network virtualization is Virtual Network Embedding (VNE), which maps a virtual network onto the shared SN. Since VNE is NP-hard, existing efforts mainly focus on proposing heuristic algorithms that try to achieve feasible VN embedding in reasonable time, consequently the resulted embedding is not optimal. To tackle this difficulty, we propose a candidate assisted (CAN-A) optimal VNE algorithm with lower computational complexity. The key idea of the CAN-A algorithm lies in constructing the candidate substrate node subset and the candidate substrate path subset before embedding. This reduces the mapping execution time substantially without performance loss. In the following embedding, four types of node and link constraints are considered in the CAN-A algorithm, making it more applicable to realistic networks. Simulation results show that the execution time of CAN-A is hugely cut down compared with pure VNE-MIP algorithm. CAN-A also outperforms the typical heuristic algorithms in terms of other performance indices, such as the average virtual network request (VNR) acceptance ratio and the average virtual link propagation delay

    Quantum anti-Zeno effect without rotating wave approximation

    Get PDF
    In this paper, we systematically study the spontaneous decay phenomenon of a two-level system under the influences of both its environment and continuous measurements. In order to clarify some well-established conclusions about the quantum Zeno effect (QZE) and the quantum anti-Zeno effect (QAZE), we do not use the rotating wave approximation (RWA) in obtaining an effective Hamiltonian. We examine various spectral distributions by making use of our present approach in comparison with other approaches. It is found that with respect to a bare excited state even without the RWA, the QAZE can still happen for some cases, e.g., the interacting spectra of hydrogen. But for a physical excited state, which is a renormalized dressed state of the atomic state, the QAZE disappears and only the QZE remains. These discoveries inevitably show a transition from the QZE to the QAZE as the measurement interval changes.Comment: 14 pages, 8 figure

    Negative-Index Refraction in a Lamellar Composite with Alternating Single Negative Layers

    Full text link
    Negative-index refraction is achieved in a lamellar composite with epsilon-negative (ENG) and mu-negative (MNG) materials stacked alternatively. Based on the effective medium approximation, simultaneously negative effective permittivity and permeability of such a lamellar composite are obtained theoretically and further proven by full-wave simulations. Consequently, the famous left-handed metamaterial comprising split ring resonators and wires is interpreted as an analogy of such an ENG-MNG lamellar composite. In addition, beyond the effective medium approximation, the propagating field squeezed near the ENG/MNG interface is demonstrated to be left-handed surface waves with backward phase velocity.Comment: 18 pages, 6 figure
    corecore