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We compare two types of Tsallis distribution, that is, with and without thermodynamical description, using the experimental data
from the STAR, PHENIX, ALICE, and CMS Collaborations on the rapidity and energy dependence of the transverse momentum
spectra in𝑝+𝑝 collisions. Both of them can fit the particle spectra well.We show that the Tsallis distribution with thermodynamical
description gives lower temperatures than the ones without it.The extra factor𝑚

𝑇
(transverse mass) in the Tsallis distribution with

thermodynamical description plays an important role in the discrepancies between the two types of Tsallis distribution. But for the
heavy particles, the choice to use𝑚

𝑇
or 𝐸
𝑇
(transverse energy) in the Tsallis distribution becomes more crucial.

1. Introduction

The particle spectrum is a basic quantity directly measured
in the experiments and it can reveal the information of par-
ticle production mechanism in heavy-ion collisions. Many
physicists have devoted themselves to studying the particle
spectra produced in the heavy-ion collisions using thermody-
namical approaches, phenomenological methods, transport
models, and so forth [1–22]. Recently, the Tsallis distribution,
which was first proposed about twenty-seven years ago as
a generalization of the Boltzmann-Gibbs distribution [23],
has attracted many theorists’ and experimentalists’ attention
in high energy collisions [5–9, 11–17, 24–34]. The excellent
ability to fit the spectra of identified hadrons and charged
particles in a large range of 𝑝

𝑇
up to 200GeV/c, which covers

15 orders of magnitude, is quite impressive. This spectacular
result was first shown by Wong et al. [14–16]. In [21, 22],
we have shown that Tsallis distribution can fit almost all the
particle spectra produced in 𝑝 + 𝑝, 𝑝 + 𝐴, and 𝐴 + 𝐴 at
RHIC and LHC. From the phenomenological view, theremay
be real physics behind the prominently phenomenological
work, for example, Regge trajectory for particle classification
[35]. We also note that there are different versions of Tsallis
distribution in the literature and we classify them as Type

A, Type B, and Type C to clarify the comparison in [21].
Type A Tsallis distribution is obtained without resorting
to thermodynamical description, but it has been adopted
to analyze the particle spectra by STAR [24] and PHENIX
[25] Collaborations at RHIC and ALICE [26–28] and CMS
[29] Collaborations at LHC. In [21], we applied it to do the
systematic analysis of identified particle spectra in 𝑝 + 𝑝

collisions at RHIC and LHC and proposed a cascade particle
production mechanism. On the other hand, Type B Tsallis
distribution is derived by taking into account the thermody-
namical consistency and is widely used by Cleymans and his
collaborators to study the particle spectra in high energy𝑝+𝑝
collisions [8–10]. It is also used by other authors for nucleus-
nucleus interactions [11]. Type A and Type B are the most
popular Tsallis distributions in the literature but they give
quite different temperatures while fitting the same particle
spectra; for example, for pion, Type A gives 𝑇 ∼ 0.13GeV
while Type B gives 𝑇 ∼ 0.075GeV. In this paper, we would
like to systematically address the question regarding the
discrepancies of the temperatures for the two types of Tsallis
distribution, by using particle spectra in 𝑝 + 𝑝 collisions. The
data produced in 𝑝+𝑝 collisions with different 𝑝

𝑇
ranges and

different rapidity cuts are collected from the experimental
collaborations at RHIC and LHC [25–27, 30, 36–42].
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The paper is organized as follows. In Section 2, we
introduce the two types of Tsallis distribution, without and
with thermodynamical description, in our comparison. In
order tomake our discussion clear, we also introduce another
three transient distributions which are very similar to Type
A and Type B Tsallis distributions. In Section 3, the results
of particle spectra from the different distributions in 𝑝 + 𝑝

collisions and the comparisons are shown. A brief conclusion
is given in Section 4.

2. Tsallis Distributions

Type A Tsallis distribution has been widely adopted by STAR
[24] and PHENIX [25] Collaborations at RHIC and ALICE
[26–28] and CMS [29] Collaborations at LHC:

𝐸
𝑑
3
𝑁

𝑑𝑝3

=
𝑑𝑁

𝑑𝑦

(𝑛 − 1) (𝑛 − 2)

2𝜋𝑛𝐶 [𝑛𝐶 + 𝑚 (𝑛 − 2)]
(1 +

𝑚
𝑇
− 𝑚

𝑛𝐶
)

−𝑛

,

(1)

where𝑚
𝑇
= √𝑝2
𝑇
+ 𝑚2 is the transverse mass, 𝑑𝑁/𝑑𝑦, 𝑛, and

𝐶 are fitting parameters, and𝑚was used as a fitting parameter
in [24], but it represents the rest mass of the particle studied
in [25–29]. When 𝑝

𝑇
≫ 𝑚, we can ignore 𝑚 in the last

term in (1) and obtain 𝐸(𝑑
3
𝑁/𝑑𝑝

3
) ∝ 𝑝

−𝑛

𝑇
. This result is

well known because high energy particles come from hard
scattering and they follow a power law distribution with 𝑝

𝑇
.

When 𝑝
𝑇
≪ 𝑚 which is the nonrelativistic limit, we obtain

𝑚
𝑇
− 𝑚 = 𝑝

2

𝑇
/2𝑚 = 𝐸

classical
𝑇

and 𝐸(𝑑3𝑁/𝑑𝑝
3
) ∝ 𝑒

−𝐸
classical
𝑇
/𝐶,

that is, a thermal distribution. The parameter 𝐶 in (1) plays
the same role as temperature 𝑇. In [21, 22], we have obtained
the simpler form of (1):

(𝐸
𝑑
3
𝑁

𝑑𝑝3
)

|𝜂|<𝑎

= 𝐴(1 +
𝐸
𝑇

𝑛𝑇
)

−𝑛

, (2)

where the transverse energy 𝐸
𝑇

= 𝑚
𝑇
− 𝑚. 𝐴, 𝑛, and 𝑇

are free fitting parameters in (2). We note that it has been
used by CMS Collaboration [31, 32, 43] and by Wong et al. in
their recent paper [16]. The STAR Collaboration also applied
a formula which is very close to (2) [44]. We adopt (2) in the
following study.

In the framework of Tsallis statistics, the distribution
function is

𝑓 (𝐸, 𝑞) = [1 + (𝑞 − 1)
𝐸 − 𝜇

𝑇
]

−1/(𝑞−1)

. (3)

Taking into account the self-consistent thermodynami-
cal description, one has to use the effective distribution
[𝑓(𝐸, 𝑞)]

𝑞. Therefore, the Tsallis distribution is obtained [8,
9, 11, 12]:

𝐸
𝑑
3
𝑁

𝑑𝑝3

= 𝑔𝑉
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cosh𝑦
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3
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]

−𝑞/(𝑞−1)

,

(4)

where 𝑔 is the degeneracy of the particle state, 𝑉 is the
volume, 𝑦 is the rapidity, 𝜇 is the chemical potential, 𝑇 is
the temperature, and 𝑞 is the entropic factor, which measures
the nonadditivity of the entropy. We dubbed it as the Type
B Tsallis distribution [21]. In (4), there are four parameters,
namely, 𝑉, 𝜇, 𝑇, and 𝑞. 𝜇 was assumed to be 0 in [8, 9, 11]
which is a reasonable assumption because the energy is high
enough and the chemical potential is much smaller than the
temperature. In the midrapidity 𝑦 = 0 region, (4) is reduced
to

𝐸
𝑑
3
𝑁

𝑑𝑝3
= 𝑔𝑉
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(2𝜋)
3
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]

−𝑞/(𝑞−1)

. (5)

It becomes very similar to (2), but there are some differences;
for example, 𝑚

𝑇
replaces 𝐸

𝑇
in the bracket and there is an

extra term 𝑚
𝑇
in front of the bracket. It should be pointed

out that there is no direct match between 𝑛 and 𝑞 in (2) and
(5). But we could find a connection between 𝑛 and 𝑞 in the
limit at large 𝑝

𝑇
. When 𝑝

𝑇
≫ 𝑚, from (5), we can obtain

𝐸
𝑑
3
𝑁

𝑑𝑝3
∝ 𝑝
−1/(𝑞−1)

𝑇
. (6)

Recalling that 𝐸(𝑑3𝑁/𝑑𝑝
3
) ∝ 𝑝

−𝑛

𝑇
when 𝑝

𝑇
≫ 𝑚 from (1),

the relation between 𝑛 and 𝑞 is

𝑛 =
1

𝑞 − 1
. (7)

Another treatment to find the relation between 𝑛 and 𝑞 can
be found in [10].

For the other Tsallis distributions in the literature, we
refer them to [21, 22]. We noted that Type A and Type B
Tsallis distributions can reproduce the particle spectra in𝑝+𝑝
collisions very well, but Type B gives lower temperatures than
the ones given by Type A. In this paper, we would like to
address this discrepancies between the two types of Tsallis
distribution. To make our discussion clear, another three
transient distributions are used to bridge Type A and Type
B distributions. In [45], a Tsallis-like distribution is obtained
in the framework of nonextensive statistics for the particle
invariant yield at midrapidity:

𝐸
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, (8)

where 𝐴, 𝑞, and 𝑇 are fitting parameters. Comparing (8)
and (5), the only difference is the power of the distribution
function, that is, 𝑞 for (5) and 1 for (8). We also introduce
another two forms of distribution. One is

𝐸
𝑑
3
𝑁

𝑑𝑝3
= 𝐴[1 + (𝑞 − 1)

𝑚
𝑇

𝑇
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, (9)

whereweneglect the term𝑚
𝑇
outside of the bracket in (5) and

the constants are absorbed into the parameter 𝐴. The other
one is
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Figure 1: Fitting results using the distributions equations (5), (8), (9), (10), and (2) for 𝜋+ in 𝑝 + 𝑝 collisions at√𝑠 = 200GeV. The solid line,
dashed line, dotted line, dash-dotted line, and bold dash-dotted line refer to (5), (8), (9), (10), and (2), respectively, but they are hardly to
distinguish. The ratios of data/fit are shown at the bottom. Data are taken from STAR [39].

Similar to (9), we neglect the term 𝑚
𝑇

in front of the
bracket in (8) but keep the rest. Using the relation equation
(7), we find that (10) becomes (2) in the limit of massless
particle.

Let us put the four distributions in order of (5), (8), (10),
and (2) and (5), (9), (10), and (2); one can see that any adjacent
distributions have only one term different. We successfully
bridge Type A and Type B Tsallis distributions and are able
to conduct our investigation. We need to point out that even
though we use the same symbols for the parameters in all five
distributions, they may have different values when fitting the
experimental data. In the next section, we will systematically
apply the five distributions to the particle spectra in 𝑝 + 𝑝

collisions, similar to our previous work [21]. But we update
some experimental data which have larger 𝑝

𝑇
ranges and

will focus on the temperature differences among the five
distributions.

3. Results

We fit the particle spectra with different 𝑝
𝑇
ranges and

different rapidity cuts from 𝑝 + 𝑝 collisions at √𝑠 = 62.4,
200, 900, 2760, and 7000GeV with the five distributions

discussed in the last section. The fitting process is the same
as that in [21, 22]. Compared with [21], the identified particle
spectra data at √𝑠 = 2760 and 7000GeV have been
updated.

In this work, we are interested in the differences of the
parameter 𝑇 from the five distributions. As we argued in
[21, 22], 𝑇 is one free fitting parameter and can be different
for different particles even though they are produced in the
same colliding system. In order to distinguish the parameters
𝑇 and 𝑞 in the distributions and make our discussion clear,
we assign 𝑇

1
(𝑞
1
), 𝑇
2
(𝑞
2
), 𝑇
3
(𝑞
3
), and 𝑇

4
(𝑞
4
) to (5), (8), (9),

and (10), respectively, while we assign 𝑇
5
and 𝑛 for (2). All the

five distributions can fit the particle transverse momentum
spectra very well. The values of 𝑇

𝑖
(𝑖 = 1, 2, 3, 4, 5), 𝑞

𝑖

(𝑖 = 1, 2, 3, 4), 𝑛, and corresponding 𝜒2
𝑖
/ndf for 𝜋, 𝐾, 𝑝, and

charged particles are shown in Tables 1 and 2. Furthermore,
the errors of 𝑇

𝑖
, 𝑞
𝑖
and 𝑛 are also provided in the tables. Here,

we only show the fitting results with the five distributions for
four cases: (1) 𝜋+ at √𝑠 = 200GeV, (2) 𝜋+ at √𝑠 = 900GeV,
(3) 𝐾+ + 𝐾

− at √𝑠 = 2760GeV, and (4) 𝑝 + 𝑝 at √𝑠 = 7000

GeV.
In Figures 1 and 2, we show the fitting results for 𝜋+ at

√𝑠 = 200GeV from STAR Collaboration and √𝑠 = 900GeV
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Table 2: The fitting parameters 𝑇
4
and 𝑞

4
in (10), 𝑇

5
and 𝑛 in (2), the errors of parameters, and 𝜒

2/ndf for the particle spectra in 𝑝 + 𝑝

collisions. The unit of 𝑇 is GeV.

Data source √𝑠 (GeV) Particle 𝑇
4

𝑞
4

𝜒
2

4
/ndf 𝑇

5
𝑛 𝜒

2

5
/ndf

PHENIX [37] 62.4 𝜋
0

0.130 ± 0.0003 1.072 ± 0.0001 1.340/11 0.139 ± 0.0003 13.729 ± 0.121 1.302/11

PHENIX [25] 62.4

𝜋
+

0.121 ± 0.0007 1.081 ± 0.002 5.386/23 0.131 ± 0.0002 11.867 ± 0.017 4.779/23
𝜋
−

0.114 ± 0.0002 1.085 ± 0.0001 5.402/23 0.125 ± 0.0003 11.661 ± 0.349 5.194/23
𝐾
+

0.111 ± 0.0004 1.104 ± 0.004 5.423/13 0.160 ± 0.0004 9.384 ± 0.011 5.121/13
𝐾
−

0.119 ± 0.001 1.089 ± 0.0001 2.271/13 0.161 ± 0.0001 10.95 ± 0.007 2.186/13
𝑝 0.099 ± 0.0002 1.071 ± 0.0003 7.861/24 0.176 ± 0.0001 16.099 ± 0.281 6.966/24
𝑝 0.119 ± 0.0004 1.055 ± 0.0003 4.136/22 0.149 ± 0.0008 12.854 ± 0.005 7.178/22

PHENIX [38] 200 𝜋
0

0.108 ± 0.0001 1.106 ± 0.0001 20.705/22 0.115 ± 0.0004 9.180 ± 0.018 23.025/22

PHENIX [25] 200

𝜋
+

0.0971 ± 0.001 1.122 ± 0.002 4.740/24 0.115 ± 0.0008 8.291 ± 0.025 4.485/24
𝜋
−

0.107 ± 0.0002 1.113 ± 0.0006 3.352/24 0.122 ± 0.0001 8.848 ± 0.020 3.354/24
𝐾
+

0.0531 ± 0.0003 1.165 ± 0.009 1.665/13 0.136 ± 0.0009 6.222 ± 0.315 1.587/13
𝐾
−

0.0915 ± 0.0006 1.133 ± 0.009 4.321/13 0.148 ± 0.0009 6.941 ± 0.081 2.999/13
𝑝 0.0372 ± 0.0003 1.117 ± 0.002 22.734/31 0.142 ± 0.0002 8.164 ± 0.006 24.581/31
𝑝 0.0481 ± 0.0001 1.109 ± 0.0001 15.932/31 0.151 ± 0.0009 9.210 ± 0.006 13.535/31

STAR [39] 200

𝜋
+

0.113 ± 0.003 1.103 ± 0.002 5.743/20 0.127 ± 0.0001 9.725 ± 0.001 5.972/20
𝜋
−

0.115 ± 0.0002 1.101 ± 0.0001 5.144/20 0.129 ± 0.0002 9.912 ± 0.011 4.705/20
𝑝 0.0703 ± 0.0001 1.101 ± 0.0001 11.452/17 0.174 ± 0.0001 10.736 ± 0.089 10.359/17
𝑝 0.0709 ± 0.0001 1.101 ± 0.0002 9.769/17 0.177 ± 0.0004 10.751 ± 0.006 9.991/17

ALICE [26] 900 𝜋
0

0.107 ± 0.0004 1.133 ± 0.0006 7.687/10 0.137 ± 0.0002 7.947 ± 0.002 7.537/10

ALICE [27] 900

𝜋
+

0.107 ± 0.0006 1.130 ± 0.0001 13.871/30 0.125 ± 0.0005 7.703 ± 0.058 13.460/30
𝜋
−

0.111 ± 0.0001 1.123 ± 0.0003 11.199/30 0.128 ± 0.002 8.090 ± 0.601 12.483/30
𝐾
+

0.0689 ± 0.0035 1.178 ± 0.002 14.271/24 0.159 ± 0.0001 5.733 ± 0.017 12.980/24
𝐾
−

0.0875 ± 0.0001 1.157 ± 0.0003 7.515/24 0.168 ± 0.0007 6.588 ± 0.022 6.609/24
𝑝 0.0407 ± 0.0001 1.145 ± 0.0002 15.148/21 0.195 ± 0.0006 8.537 ± 0.008 13.974/21
𝑝 0.0404 ± 0.0001 1.147 ± 0.0002 15.637/21 0.190 ± 0.0008 8.660 ± 0.379 13.675/21

ALICE [41] 2760 𝜋
0

0.123 ± 0.0002 1.137 ± 0.0002 5.979/15 0.142 ± 0.002 7.300 ± 0.112 5.987/15

ALICE [36] 2760
𝜋
+
+ 𝜋
−

0.110 ± 0.0002 1.142 ± 0.0003 30.885/60 0.130 ± 0.0002 7.034 ± 0.001 31.583/60
𝐾
+
+ 𝐾
−

0.123 ± 0.0001 1.140 ± 0.0001 13.608/55 0.193 ± 0.0003 7.131 ± 0.0008 14.481/55
𝑝 + 𝑝 0.104 ± 0.0002 1.119 ± 0.0004 21.531/46 0.216 ± 0.0003 8.484 ± 0.0005 32.877/46

ALICE [26] 7000 𝜋
0

0.120 ± 0.0005 1.145 ± 0.001 13.240/30 0.139 ± 0.0003 6.885 ± 0.006 16.750/30

ALICE [42] 7000
𝜋
+
+ 𝜋
−

0.105 ± 0.0002 1.160 ± 0.0004 26.539/38 0.128 ± 0.0004 6.257 ± 0.0002 26.216/38
𝐾
+
+ 𝐾
−

0.131 ± 0.0002 1.154 ± 0.0003 5.373/45 0.206 ± 0.0003 6.497 ± 0.009 5.333/45
𝑝 + 𝑝 0.140 ± 0.0002 1.114 ± 0.0002 13.768/43 0.247 ± 0.0006 8.750 ± 0.006 12.700/43

CMS [30] 900 charged 0.115 ± 0.0001 1.129 ± 0.0005 85.776/17 0.126 ± 0.0002 7.627 ± 0.018 84.867/17
CMS [40] 2760 charged 0.117 ± 0.0004 1.144 ± 0.0001 110.770/19 0.137 ± 0.005 6.915 ± 0.035 110.4/19
CMS [30] 7000 charged 0.124 ± 0.004 1.152 ± 0.0001 80.353/24 0.145 ± 0.0003 6.583 ± 0.014 80.25/24

from ALICE Collaboration using the five distributions: (5)
(solid line), (8) (dashed line), (9) (dotted line), (10) (dash-
dotted line), and (2) (bold dash-dotted line), respectively.
Since the lines are so close to each other, they are almost
indistinguishable in the figures. To visualize the fitting quality
better, we also plot the ratios of experimental data and fitting
results at the bottom of the figures. We can see that the
five distributions can describe the experimentally measured
𝜋
+ transverse momentum spectra very well. The errors are

within 20%.
To show the fitting results other than pions, we select𝐾++

𝐾
− at√𝑠 = 2760GeV and 𝑝 + 𝑝 at√𝑠 = 7000GeV at LHC in

Figures 3 and 4, respectively. For the five distributions, we can
not distinguish them at all in the two cases. Similar to pions,
the fitting qualities are also very good.

As we can see fromTables 1 and 2, the values of parameter
𝑇
𝑖
are different. It is the main purpose of this work to target

what causes the temperature discrepancies among different
Tsallis distributions, with and without thermodynamical
description. In order to avoid confusion, we emphasis the
meaning of each 𝑇

𝑖
. Using the Tsallis distribution classifica-

tion in [21], 𝑇
1
refers to Type B Tsallis distribution and 𝑇

5

refers to Type A Tsallis distribution. 𝑇
2
, 𝑇
3
, and 𝑇

4
are from

the transient distributions to bridge TypeA andType BTsallis
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Figure 2: Same as in Figure 1 for 𝜋+ in 𝑝 + 𝑝 collisions at√𝑠 = 900GeV. Data are taken from ALICE [27].
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Figure 3: Same as in Figure 1 for 𝐾+ + 𝐾
− in 𝑝 + 𝑝 collisions at√𝑠 = 2760GeV. Data are taken from ALICE [36].
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Figure 4: Same as in Figure 1 for 𝑝 + 𝑝 in 𝑝 + 𝑝 collisions at√𝑠 = 7000GeV. Data are taken from ALICE [42].

distributions. To have a clear picture for the parameter 𝑇
𝑖

from the five distributions, we plot 𝑇
𝑖
versus the colliding

energy √𝑠 for 𝜋, 𝐾, and 𝑝, as shown in Figure 5. We can
clearly see that Type B Tsallis distribution gives lower 𝑇

than Type A Tsallis distribution, as we mentioned in [21].
For the light particles, that is, pions (Figure 5(a)), 𝑇

1
and

𝑇
2
which are from the distributions ((5) and (8)) with extra

𝑚
𝑇
term are lower than 𝑇

3
, 𝑇
4
, and 𝑇

5
which are from the

distributions ((9), (10), and (2)) without it. As we see that
𝑇
1
is larger than 𝑇

2
, since (5) and (8) are similar except the

power in the distributions, we conclude that the power 𝑞
in (5) causes larger 𝑇. This can be verified by comparing
𝑇
3
with 𝑇

4
. With the same argument, since 𝑇

4
is smaller

than 𝑇
5
, 𝑚
𝑇
in (10) causes smaller 𝑇. To see the effects of

𝑞 and 𝑚
𝑇
in the distribution, we can compare 𝑇

3
with 𝑇

5
,

which are similar. The effects of the power 𝑞 causing larger 𝑇
and 𝑚

𝑇
causing smaller 𝑇 cancel each other. For the heavier

particles, that is, kaons and protons (Figures 5(b) and 5(c)),
the effect of 𝑚

𝑇
in (9) wins and 𝑇

3
is smaller than 𝑇

5
. We

note that the effect of the extra 𝑚
𝑇
term is crucial for the

temperature difference between Type A and Type B Tsallis
distributions, especially for the light particles, while for the
heavier particles, the effect of the choice of 𝑚

𝑇
or 𝐸
𝑇
in the

Tsallis distribution becomes more important as we can see
that 𝑇

5
is larger than the other 𝑇

𝑖
for kaons and protons in

Figure 5.

4. Summary

In this paper, we have presented a detailed investigation
of two types of Tsallis distribution, with and without the
thermodynamical description, by the 𝑝

𝑇
spectra measured

from STAR and PHENIX Collaborations at RHIC and
ALICE and CMS Collaborations at LHC. The power 𝑞 in
the Tsallis distribution with thermodynamical description is
responsible for the thermodynamical consistency. To show
a clear and complete comparison, another three transient
distributions to bridge the two types of Tsallis distribution
are also given. Good agreements are obtained, but they give
different temperatures. Agreed with our previous work [21],
the Tsallis distribution with thermodynamical description
gives lower 𝑇 than the ones given by the distribution without
it. The extra term𝑚

𝑇
in the Tsallis distribution with thermo-

dynamical description is responsible for the discrepancies of
the temperatures. But for the heavier particles, the effect of
the choice of 𝑚

𝑇
or 𝐸
𝑇
in the Tsallis distribution beats the

effect of the extra term 𝑚
𝑇
. The data for 𝑝 + 𝑝 collisions at

8 and 13 TeV are expected to provide further support for the
conclusions presented here.
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Figure 5: (Color online) temperature 𝑇 in the five distributions versus√𝑠 for (a) 𝜋, (b) 𝐾, and (c) 𝑝 in 𝑝 + 𝑝 collisions.
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production in pp collisions at √𝑠 = 7Tev with ALICE,” Physics
Letters B, vol. 712, no. 4-5, pp. 309–318, 2012.

[29] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., “Study of
the inclusive production of charged pions, kaons, and protons in
pp collisions at√𝑠 = 0.9, 2.76, and 7 TeV,”TheEuropean Physical
Journal C, vol. 72, article 2164, 37 pages, 2012.

[30] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., “Charged
particle transverse momentum spectra in pp collisions at √𝑠 =
0.9 and 7 TeV,” Journal of High Energy Physics, vol. 2011, no. 8,
article 86, 38 pages, 2011.

[31] V. Khachatryan, A. M. Sirunyan, A. Tumasyan et al.,
“Transverse-momentum and pseudorapidity distributions
of charged hadrons in pp collisions at √𝑠 = 0.9 and 2.36 TeV,”
Journal of High Energy Physics, vol. 2010, article 41, 19 pages,
2010.

[32] V. Khachatryan, A. M. Sirunyan, A. Tumasyan et al.,
“Transverse-momentum and pseudorapidity distributions
of charged hadrons in 𝑝𝑝 collisions at √𝑠 = 7Tev,” Physical
Review Letters, vol. 105, no. 2, Article ID 022002, 14 pages, 2010.

[33] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., “Study
of the production of charged pions, kaons, and protons in pPb
collisions at √𝑠𝑁𝑁 = 5.02TeV,” The European Physical Journal
C, vol. 74, article 2847, 27 pages, 2014.

[34] J. Cleymans and M. D. Azmi, “Large transverse momenta and
Tsallis thermodynamics,” Journal of Physics: Conference Series,
vol. 668, Article ID 012050, 4 pages, 2016.

[35] C. Y. Wong, Introduction to High-Energy Heavy-Ion Collisions,
World Scientific, Singapore, 1994.

[36] B. Abelev, J. Adam, D. Adamová et al., “Production of charged
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[41] B. Abelev, J. Adam,D. Adamová et al., “Neutral pion production
at midrapidity in pp and Pb-Pb collisions at √𝑠𝑁𝑁 = 2.76TeV,”
The European Physical Journal C, vol. 74, article 3108, 20 pages,
2014.
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