20 research outputs found
Observation of many-body Fock space dynamics in two dimensions
Quantum many-body simulation provides a straightforward way to understand
fundamental physics and connect with quantum information applications. However,
suffering from exponentially growing Hilbert space size, characterization in
terms of few-body probes in real space is often insufficient to tackle
challenging problems such as quantum critical behavior and many-body
localization (MBL) in higher dimensions. Here, we experimentally employ a new
paradigm on a superconducting quantum processor, exploring such elusive
questions from a Fock space view: mapping the many-body system onto an
unconventional Anderson model on a complex Fock space network of many-body
states. By observing the wave packet propagating in Fock space and the
emergence of a statistical ergodic ensemble, we reveal a fresh picture for
characterizing representative many-body dynamics: thermalization, localization,
and scarring. In addition, we observe a quantum critical regime of anomalously
enhanced wave packet width and deduce a critical point from the maximum wave
packet fluctuations, which lend support for the two-dimensional MBL transition
in finite-sized systems. Our work unveils a new perspective of exploring
many-body physics in Fock space, demonstrating its practical applications on
contentious MBL aspects such as criticality and dimensionality. Moreover, the
entire protocol is universal and scalable, paving the way to finally solve a
broader range of controversial many-body problems on future larger quantum
devices.Comment: 8 pages, 4 figures + supplementary informatio
Inhibiting MARSs reduces hyperhomocysteinemia‐associated neural tube and congenital heart defects
Hyperhomocysteinemia is a common metabolic disorder that imposes major adverse health consequences. Reducing homocysteine levels, however, is not always effective against hyperhomocysteinemia‐associated pathologies. Herein, we report the potential roles of methionyl‐tRNA synthetase (MARS)‐generated homocysteine signals in neural tube defects (NTDs) and congenital heart defects (CHDs). Increased copy numbers of MARS and/or MARS2 were detected in NTD and CHD patients. MARSs sense homocysteine and transmit its signal by inducing protein lysine (N)‐homocysteinylation. Here, we identified hundreds of novel N‐homocysteinylated proteins. N‐homocysteinylation of superoxide dismutases (SOD1/2) provided new mechanistic insights for homocysteine‐induced oxidative stress, apoptosis and Wnt signalling deregulation. Elevated MARS expression in developing and proliferating cells sensitizes them to the effects of homocysteine. Targeting MARSs using the homocysteine analogue acetyl homocysteine thioether (AHT) reversed MARS efficacy. AHT lowered NTD and CHD onsets in retinoic acid‐induced and hyperhomocysteinemia‐induced animal models without affecting homocysteine levels. We provide genetic and biochemical evidence to show that MARSs are previously overlooked genetic determinants and key pathological factors of hyperhomocysteinemia, and suggest that MARS inhibition represents an important medicinal approach for controlling hyperhomocysteinemia‐associated diseases
Target density effects on charge tansfer of laser-accelerated carbon ions in dense plasma
We report on charge state measurements of laser-accelerated carbon ions in
the energy range of several MeV penetrating a dense partially ionized plasma.
The plasma was generated by irradiation of a foam target with laser-induced
hohlraum radiation in the soft X-ray regime. We used the tri-cellulose acetate
(CHO) foam of 2 mg/cm density, and -mm interaction
length as target material. This kind of plasma is advantageous for
high-precision measurements, due to good uniformity and long lifetime compared
to the ion pulse length and the interaction duration. The plasma parameters
were diagnosed to be T=17 eV and n=4 10 cm.
The average charge states passing through the plasma were observed to be higher
than those predicted by the commonly-used semiempirical formula. Through
solving the rate equations, we attribute the enhancement to the target density
effects which will increase the ionization rates on one hand and reduce the
electron capture rates on the other hand. In previsous measurement with
partially ionized plasma from gas discharge and z-pinch to laser direct
irradiation, no target density effects were ever demonstrated. For the first
time, we were able to experimentally prove that target density effects start to
play a significant role in plasma near the critical density of Nd-Glass laser
radiation. The finding is important for heavy ion beam driven high energy
density physics and fast ignitions.Comment: 7 pages, 4 figures, 35 conference
Ubiquitinome Profiling Reveals the Landscape of Ubiquitination Regulation in Rice Young Panicles
Ubiquitination, an essential post-transcriptional modification (PTM), plays a vital role in nearly every biological process, including development and growth. Despite its functions in plant reproductive development, its targets in rice panicles remain unclear. In this study, we used proteome-wide profiling of lysine ubiquitination in rice (O. sativa ssp. indica) young panicles. We created the largest ubiquitinome dataset in rice to date, identifying 1638 lysine ubiquitination sites on 916 unique proteins. We detected three conserved ubiquitination motifs, noting that acidic glutamic acid (E) and aspartic acid (D) were most frequently present around ubiquitinated lysine. Enrichment analysis of Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of these ubiquitinated proteins revealed that ubiquitination plays an important role in fundamental cellular processes in rice young panicles. Interestingly, enrichment analysis of protein domains indicated that ubiquitination was enriched on a variety of receptor-like kinases and cytoplasmic tyrosine and serine-threonine kinases. Furthermore, we analyzed the crosstalk between ubiquitination, acetylation, and succinylation, and constructed a potential protein interaction network within our rice ubiquitinome. Moreover, we identified ubiquitinated proteins related to pollen and grain development, indicating that ubiquitination may play a critical role in the physiological functions in young panicles. Taken together, we reported the most comprehensive lysine ubiquitinome in rice so far, and used it to reveal the functional role of lysine ubiquitination in rice young panicles
Enantioselective Copper-Catalyzed Defluoroalkylation Using Arylboronate-Activated Alkyl Grignard Reagents
A copper-catalyzed
system has been introduced for the enantioselective
defluoroalkylation of linear 1-(trifluoromethyl)alkenes through C–F
activation to synthesize various <i>gem</i>-difluoroalkenes
as carbonyl mimics. For the first time, arylboronate-activated alkyl
Grignard reagents were uncovered in this cross-coupling reaction.
Mechanistic studies confirmed that the tetraorganoborate complexes
generated in situ were the key reactive species for this transformation
Palladium-Catalyzed Regioselective C8–H Amination of 1‑Naphthylamine Derivatives with Aliphatic Amines
A simple and facile
protocol for palladium-catalyzed picolinamide-directed
C8–H amination of 1-naphthylamine derivatives with simple secondary
aliphatic amines was developed, thereby providing a new route to 1,8-naphthalenediamine
derivatives. It is noteworthy that the picolinamide moiety as a bidentate
directing group may play a key role in this regioselective transformation
Palladium-Catalyzed Regioselective C8–H Amination of 1‑Naphthylamine Derivatives with Aliphatic Amines
A simple and facile
protocol for palladium-catalyzed picolinamide-directed
C8–H amination of 1-naphthylamine derivatives with simple secondary
aliphatic amines was developed, thereby providing a new route to 1,8-naphthalenediamine
derivatives. It is noteworthy that the picolinamide moiety as a bidentate
directing group may play a key role in this regioselective transformation