121 research outputs found

    The use of un-composted spent mushroom residue as a replacement of peat in substrates for Gossypium herbaceum and Talinum paniculatum

    Get PDF
    In order to evaluate the effect of growing media with peat and spent mushroom residue (SMR) on medicinal plants, we cultured Gossypium herbaceum and Talinum paniculatum seedlings in the substrates with SMR in proportions of 0% (control), 25%, 50%, 75%, and 100%. Results showed that G. herbaceum seedlings can survive in all treatments, but T. paniculatum seedlings died out in 75% and 100% SMR substrates where higher electrical conductance was found (2.3-2.7 dS m-1). Both growth and biomass mostly declined with the increase of SMR proportion in the growing media for the two species except for root biomass in T. paniculatum seedlings between the control and the 25% SMR treatment. Shoot nitrogen (N) and phosphorus (P) concentrations and contents tended to be higher in low- and high-SMR-proportional substrates, respectively. N and P statuses were both diagnosed to be excessive than needed for the two species. Overall, it was not recommended to culture G. herbaceum seedlings in the substrates with SMR; instead T. paniculatum seedlings can be cultured in the growing media with SMR in volumetric proportion of 25%

    Coupled hydro-meteorological modelling on a HPC platform for high-resolution extreme weather impact study

    Get PDF
    Impact-focused studies of extreme weather require coupling of accurate simulations of weather and climate systems and impact-measuring hydrological models which themselves demand larger computer resources. In this paper, we present a preliminary analysis of a high-performance computing (HPC)-based hydrological modelling approach, which is aimed at utilizing and maximizing HPC power resources, to support the study on extreme weather impact due to climate change. Here, four case studies are presented through implementation on the HPC Wales platform of the UK mesoscale meteorological Unified Model (UM) with high-resolution simulation suite UKV, alongside a Linux-based hydrological model, Hydrological Predictions for the Environment (HYPE). The results of this study suggest that the coupled hydro-meteorological model was still able to capture the major flood peaks, compared with the conventional gauge- or radar-driving forecast, but with the added value of much extended forecast lead time. The high-resolution rainfall estimation produced by the UKV performs similarly to that of radar rainfall products in the first 2–3 days of tested flood events, but the uncertainties particularly increased as the forecast horizon goes beyond 3 days. This study takes a step forward to identify how the online mode approach can be used, where both numerical weather prediction and the hydrological model are executed, either simultaneously or on the same hardware infrastructures, so that more effective interaction and communication can be achieved and maintained between the models. But the concluding comments are that running the entire system on a reasonably powerful HPC platform does not yet allow for real-time simulations, even without the most complex and demanding data simulation part

    Effect of dynamic threshold pressure gradient on production performance in water-bearing tight gas reservoir

    Get PDF
    AbstractWater content and distribution have important impacts on gas production in water-bearing tight gas reservoirs. However, due to the structural and chemical heterogeneity of tight reservoirs, the water phase exists in various states, which has complicated the analyses of the effects of water characteristics on tight gas production performance. In this work, the water phase is distinguished from immobile to mobile states and the term of constrained water saturation is proposed. It is established that water can flow when the driving pressure difference is larger than the critical driving pressure difference. A new theoretical model of threshold pressure gradient is derived to incorporate the influences of constrained water saturation and permeability. On this basis, a new prediction model considering the varied threshold pressure gradient is obtained, and the result indicates that when threshold pressure gradient is constant, the real gas production capacity of the reservoir will be weakened. Meanwhile, a dynamic supply boundary model is presented, which indicates that the permeability has a strong influence on the dynamic supply boundary, whereas the impact of initial water saturation is negligible. These findings provide insights into the understanding of the effects of water state and saturation on the threshold pressure gradient and gas production rate in tight gas reservoirs. Furthermore, this study provides useful guidance on the prediction of field-scale gas production.Cited as: Zhu, W., Liu, Y., Shi, Y., Zou, G., Zhang, Q., Kong, D. Effect of dynamic threshold pressure gradient on production performance in water-bearing tight gas reservoir. Advances in Geo-Energy Research, 2022, 6(4): 286-295. https://doi.org/10.46690/ager.2022.04.0

    Polynuclear alkoxy–zinc complexes of bowl-shaped macrocycles and their use in the copolymerisation of cyclohexene oxide and CO2

    Get PDF
    The reactions between alcohols and the tetranuclear ethyl-Zn complexes of an ortho-phenylene-bridged polypyrrole macrocycle, Zn4Et4(L1) 1 and the related anthracenyl-bridged macrocyclic complex, Zn4Et4(THF)4(L2) 2 have been studied. With long-chain alcohols such as n-hexanol, the clean formation of the tetranuclear hexoxide complex Zn4(OC6H13)4(L1) 3 occurs. In contrast, the use of shorter-chain alcohols such as i-propanol results in the trinuclear complex Zn3(μ2-OiPr)2(μ3-OiPr)(HL1) 4 that arises from demetalation; this complex was characterised by X-ray crystallography. The clean formation of these polynuclear zinc clusters allowed a study of their use as catalysts in the ring-opening copolymerisation (ROCOP) reaction between cyclohexene oxide and CO2. In situ reactions involving the pre-catalyst 1 and n-hexanol formed the desired polymer with the best selectivity for polycarbonate (90%) at 30 atm CO2, whilst the activity and performance of pre-catalyst 2 was poor in comparison

    Microbial diversity and physicochemical properties in farmland soils amended by effective microorganisms and fulvic acid for cropping Asian ginseng

    Get PDF
    Demand for products made from the dry mass of Asian ginseng (Panax ginseng) is growing, but harvest is limited by fungal disease infection when ginseng is replanted in the same field. Rotated cropping with maize can cope with the replant limit, but it may take decades. We aimed to amend post-maize-cropping farmland soils for cultivating Asian ginseng, using effective microorganisms EMs and fulvic acid (FA) additives and detecting and comparing their effects on soil microbial diversity and physiochemical properties. Amendments promoted seedling survival and depressed disease-infection. Both EMs and FA increased the relative abundances of Pseudomonas, Flavobacterium, Duganella, and Massilia spp., but, decreased the relative abundances of Fusarium and Sistotrema. In addition, soil nutrient availability and properties that benefitted nutrient availabilities were promoted. In conclusion, amendments with EMs and FA improved the fertility of farmland soils, and the quality of Asian ginseng, and revealed the relationship between soil microbial diversity and physiochemical properties

    Developing A High Performance Computing (HPC) Based Hydrological Modelling Framework To Support Extreme Weather Impact Studies

    Full text link
    Computer based modelling has long been an established norm in hydrological studies. The demand of computing power in hydrological modelling domain, although keep steadily growing over past decades, it has never been higher as we now look into many impact studies due to climate change. While HPC has long been a major player in the neighbouring field of climate sciences, its role has yet to be defined when the resources become increasingly accessible to hydrological modellers attempting to address the impact of climate change in terms of extreme weather events. In this paper, we present a framework of HPC based hydrological modelling approach that can utilize and maximize the HPC power to support the study on extreme weather impact due to climate change. The framework is intended to achieve 1) seamlessly coupling of the hydrological models with the climate/numerical weather models that are supported by the same HPC platform; 2) supporting large-scale hydrological modelling in greater details; 3) conducting joint ensemble runs of coupled modelling systems so as to account for the modelling uncertainty; 4) supporting multi-model ensembles to identify potential extreme storms with certain climate projections; 5) the ability of processing large volume of data (terabyte level). An example of such system is also discussed with the implementation using Fujitsu’s HPC platform, the UK Unified Model (as the climate model backend) and a versatile interface to a number of preferred hydrological models

    Growth, Nutrient Uptake, and Foliar Gas Exchange in Pepper Cultured with Un-composted Fresh Spent Mushroom Residue

    Get PDF
    Spent mushroom substrate (SMS) can be used as the component of growing medium for the culture of crop plants. Fresh SMS may have the potential as an alternative to peat to raise horticultural plants. In this study, five container media characterized by the proportions of SMS to commercial peat in 0% (control), 25%, 50%, 75%, and 100% were used to raise pepper (Capsicum annum L.) plants. Initial SMS was found to have low available nitrogen (N) content (<20 mg kg-1) but moderate extractable phosphorus (P) content (900 mg kg-1). In the second month photosynthetic rate was found to decline in the 75% treatment. At harvest in the third month, plants in the 100% treatment nearly died out. The 25% treatment resulted in the highest height (19 cm) and diameter growth (0.3 cm), shoot (0.6 g) and root biomass accumulation (0.13 g), fruit weight (3 g), and shoot carbohydrate content (98 mg g-1), but lowest foliar acid phosphatase activity (30 µg NPP g-1 FW min-1). With the increase of SMS proportion in the substrate, the medium pH and electrical conductance (EC) increased with the decrease of foliar size. The available N and P contents in the substrates showed contrasting relationship with N and P contents in pepper plants. Therefore, fresh SMS cannot be directly used as the substrate for the culture of pepper plants. According to our findings fresh SMS was recommended to be mixed in the proportion of 25% with commercial peat for the culture of horticultural plants

    Repeat expansion scanning of the NOTCH2NLC gene in patients with multiple system atrophy

    Get PDF
    © 2020 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals, Inc on behalf of American Neurological Association. Objective: Trinucleotide GGC repeat expansion in the 5’UTR of the NOTCH2NLC gene has been recognized as the pathogenesis of neuronal intranuclear inclusion disease (NIID). Previous studies have described that some NIID patients showed clinical and pathological similarities with multiple system atrophy (MSA). This study aimed to address the possibility that GGC repeat expansion in NOTCH2NLC might be associated with some cases diagnosed as MSA. Methods: A total of 189 patients with probable or possible MSA were recruited to screen for GGC repeat expansion in NOTCH2NLC by repeat-primed PCR (RP-PCR). In addition, long-read sequencing (LRS) was performed for all patients with RP-PCR-positive expansion, five patients with RP-PCR-negative expansion, and five controls on the Nanopore platform. Skin biopsies were performed on two patients with GGC expansion. Results: Five of 189 patients (2.6%) were found to have GGC expansion in NOTCH2NLC. LRS results identified that the five patients had GGC expansion between 101 and 266, but five patients with RP-PCR-negative expansion and five controls had GGC expansion between 8 and 29. Besides the typical symptoms and signs of MSA, patients with GGC expansion might have longer disease duration, severe urinary retention, and prominent cognitive impairment. In the skin samples from the patients with GGC expansion, typical p62-postive but alpha-synuclein-negative intranuclear inclusions were found in fibroblasts, adipocyte and ductal epithelial cells of sweat glands. Conclusion: Trinucleotide GGC repeat expansion in NOTCH2NLC could be observed in patients with clinically diagnosed MSA. Adult-onset NIID should be considered as a differential diagnosis of MSA

    A genome-wide association study based on the China Kadoorie Biobank identifies genetic associations between snoring and cardiometabolic traits

    Get PDF
    Despite the high prevalence of snoring in Asia, little is known about the genetic etiology of snoring and its causal relationships with cardiometabolic traits. Based on 100,626 Chinese individuals, a genome-wide association study on snoring was conducted. Four novel loci were identified for snoring traits mapped on SLC25A21, the intergenic region of WDR11 and FGFR, NAA25, ALDH2, and VTI1A, respectively. The novel loci highlighted the roles of structural abnormality of the upper airway and craniofacial region and dysfunction of metabolic and transport systems in the development of snoring. In the two-sample bi-directional Mendelian randomization analysis, higher body mass index, weight, and elevated blood pressure were causal for snoring, and a reverse causal effect was observed between snoring and diastolic blood pressure. Altogether, our results revealed the possible etiology of snoring in China and indicated that managing cardiometabolic health was essential to snoring prevention, and hypertension should be considered among snorers

    Assessing the Effectiveness of Direct Data Merging Strategy in Long-Term and Large-Scale Pharmacometabonomics

    Get PDF
    Because of the extended period of clinic data collection and huge size of analyzed samples, the long-term and large-scale pharmacometabonomics profiling is frequently encountered in the discovery of drug/target and the guidance of personalized medicine. So far, integration of the results (ReIn) from multiple experiments in a large-scale metabolomic profiling has become a widely used strategy for enhancing the reliability and robustness of analytical results, and the strategy of direct data merging (DiMe) among experiments is also proposed to increase statistical power, reduce experimental bias, enhance reproducibility and improve overall biological understanding. However, compared with the ReIn, the DiMe has not yet been widely adopted in current metabolomics studies, due to the difficulty in removing unwanted variations and the inexistence of prior knowledges on the performance of the available merging methods. It is therefore urgently needed to clarify whether DiMe can enhance the performance of metabolic profiling or not. Herein, the performance of DiMe on 4 pairs of benchmark datasets was comprehensively assessed by multiple criteria (classification capacity, robustness and false discovery rate). As a result, integration/merging-based strategies (ReIn and DiMe) were found to perform better under all criteria than those strategies based on single experiment. Moreover, DiMe was discovered to outperform ReIn in classification capacity and robustness, while the ReIn showed superior capacity in controlling false discovery rate. In conclusion, these findings provided valuable guidance to the selection of suitable analytical strategy for current metabolomics
    corecore